
the better way to heat

UK





SWP – Series

83050900dUK - Translation into English of the original German operating manual



# Please read first

These operating instructions provide information on how to use the appliance. They are an integral element of the product and must be kept within easy reach in close proximity to the appliance. They must remain available throughout the entire service life of the appliance. They must be handed over to new owners or users of the machine.

Read the operating instructions before commencing all work on and with the appliance. In particular, the Safety section. Follow all instructions to a full and unrestricted extent.

These operating instructions may contain descriptions which appear unintelligible or unclear. If questions or unclear points arise, please contact the works customer service or the local representative of the manufacturer.

As these operating instructions have been written for several device types, you must always adhere to the parameters applicable for the relevant device type.

The operating instructions are only intended for persons working on or with the appliance. Treat all elements in confidence. They are protected by copyright. They may not be reproduced in any form, transferred, duplicated, saved in electronic systems or translated into another language, either in whole or in part, without the written consent of the manufacturer.

# Symbols

Symbols are used in the operating instructions. They have the following significance:



Information for uers.



Information or instructions for qualified technicians.



#### DANGER!

Indicates a directly imminent hazard, which will result in serious injuries or death.



#### WARNING!

Indicates a potentially hazardous situation, which could result in serious injuries or death.



#### **CAUTION!**

Indicates a potentially hazardous situation, which could result in moderate or minor injuries.

#### ATTENTION.

Indicates a potentially hazardous situation which could result in material damage.

#### NOTE.

Emphasised information.

#### **ENERGY SAVING TIP**



Indicates suggestions that help to save energy, raw materials and costs.



Reference to other sections in the operating instructions.



Reference to other help tips by the manufacturer.



# Table of Contents

| ♠ | يمهر |
|---|------|

# INFORMATION FOR USERS AND QUALIFIED PERSONNEL

| PLEASE READ FIRST                         | 2 |
|-------------------------------------------|---|
| SYMBOLS                                   | 2 |
| INTENDED USE                              | 4 |
| EXCLUSION OF LIABILITY                    | 4 |
| EC CONFORMITY                             | 4 |
| SAFETY                                    | 4 |
| CUSTOMER SERVICE                          | 5 |
| WARRANTY / GUARANTEE                      | 5 |
| DISPOSAL                                  | 5 |
| HOW HEAT PUMPS FUNCTION                   | 5 |
| AREA OF APPLICATION                       | 5 |
| HEAT QUANTITY RECORDING                   | 6 |
| OPERATION                                 | 6 |
| CARE OF THE DEVICE                        | 6 |
| DEVICE MAINTENANCE                        |   |
| Cleaning and Rinsing of device components | 6 |
| FAULTS                                    | 7 |
|                                           |   |

### INSTRUCTIONS FOR QUALIFIED TECHNICIANS

| SCOPE OF SUPPLY7                                                                                |
|-------------------------------------------------------------------------------------------------|
| SET-UP AND INSTALLATION8<br>Installation area                                                   |
| Transport to the installation site8<br>Installation9                                            |
| ASSEMBLY OF THE HYDRAULIC CONNECTIONS10                                                         |
| RINSING, FILLING AND VENTILATING THE SYSTEM 12<br>Rinsing, filling and bleeding the heat source |
| ISOLATION OF THE HYDRAULIC CONNECTIONS 14                                                       |
| INSTALLATION OF THE CONTROL ELEMENT                                                             |
| INSTALLATION AND REMOVAL OF THE SCREEN 16                                                       |
| BUFFER TANK                                                                                     |
| CIRCULATION PUMPS 17                                                                            |
| DOMESTIC HOT WATER PREPARATION                                                                  |
| DOMESTIC HOT WATER TANK                                                                         |
| COMMISSIONING                                                                                   |
| DEINSTALLATION                                                                                  |
|                                                                                                 |

| TECHNICAL DATA/SCOPE OF SUPPLY                                                     |    |
|------------------------------------------------------------------------------------|----|
| SWP 1100 – SWP 1600                                                                | 20 |
| SWP 700H – SWP 1000H                                                               | 22 |
| POWER CURVES<br>Heating Power/COP / Power Consumption /<br>Heat Pump Pressure Loss |    |
| SWP 1100                                                                           | 24 |
| SWP 1250                                                                           | 25 |
| SWP 1600                                                                           |    |
| SWP 700H                                                                           |    |
| SWP 850H                                                                           |    |
| SWP 1000H                                                                          | 29 |
| DIMENSIONAL DIAGRAMS AND<br>INSTALLATIONS PLANS<br>Dimensional diagrams            |    |
| SWP 1100 – 1250 / SWP 700H – 1000H                                                 |    |
| SWP 1600                                                                           |    |
| Installation plans                                                                 |    |
| HYDRAULIC INTEGRATION                                                              |    |
| Separate buffer tank                                                               |    |
| Legend Hydraulic integration                                                       | 35 |
| TERMINAL DIAGRAM                                                                   | 36 |
| CIRCUIT DIAGRAMS                                                                   | 37 |
| EC DECLARATION OF CONFORMITY                                                       | 41 |
| TECHNICAL DATA ACCORDING ECODESIGN<br>DIRECTIVE                                    |    |
| SWP 1100                                                                           |    |
| SWP 1250                                                                           |    |
| SWP 1600                                                                           |    |
| SWP 850H                                                                           |    |
| SWP 1000H                                                                          | 50 |



# Intended use

The device must only be used in accordance with its intended application. This is:

- for heating.
- for domestic hot water preparation.

The device may only be operated within its technical parameters.

Overview "Technical Data/Scope of Supply".

° NOTE.

Show operation of the heat pump or heat pump system to the relevant power supply utility.

# Exclusion of liability

The manufacturer is not liable for damage resulting from improper use of the device.

The liability of the manufacturer is also invalidated:

- if work has been carried out on the device and its components divergent from the specifications of these operating instructions.
- if work has been carried out improperly on the device and its components.
- if work has been carried out on the device which is not described in these operating instructions, and this work has not been expressly authorised in writing by the manufacturer.
- if the device or components in the device have been modified, converted or removed without the express written approval of the manufacturer.

# EC Conformity

The device bears the CE marking.

EC Declaration of Conformity.

# Safety

The device is safe to operate for its intended use. The construction and design of the device correspond to the prior art, as well as all relevant DIN/VDE regulations and all relevant safety provisions.

Any person who carries out work on the device must have read and understood the operating instructions before starting the work. This also applies if the person in question has already worked with such a device or a similar device or has been trained by the manufacturer.

Any person who carried out work on the device must comply with the health and safety at work regulations locally applicable. This applies, in particular, in respect to wearing personal protective clothing.



#### DANGER!

Danger of fatal injury due to electric current!

Electrical connections may be installed only by qualified electricians.

Before opening the unit, disconnect the system from the power supply and secure it from being switched back on!



#### WARNING!

Only qualified technicians (heating, refrigerating plant or coolant technicians and electricians) may carry out work on the device and its components.



#### WARNING!

Observe the safety labels on and in the device.



#### WARNING!

Device contains coolant!

If coolant escapes due to a leakage, this poses a threat to people and the environment. Therefore:

- Switch off system.
- Ensure installation room is well ventilated
- Inform the customer service authorised by the manufacturer.

#### ATTENTION.

For safety-relevant reasons: Never disconnect the device from the power supply, unless the device is opened.



#### ATTENTION. I

Use of pure water in a flat-plate collector or a borehole heat exchanger (vertical collector) is not permitted.

### Customer service

For technical assistance, please contact your qualified technician or the manufacturer's local service partner.

For a current list and additional partners of the manufacturer, please visit

DE: www.alpha-innotec.de

EU: www.alpha-innotec.com

# Warranty / Guarantee

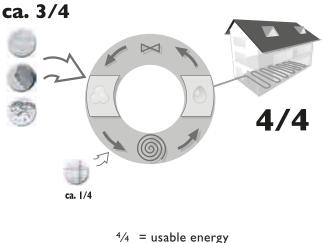
You can find warranty and guarantee provisions in your purchase documents.

#### NOTE. ñ

Contact your dealer for all matters relating to the warranty and guarantee.

# Disposal

When decommissioning the end-of-life device, observe locally-applicable laws, directives and standards for the recycling, reuse and disposal of operating materials and components of refrigerating devices.


Deinstallation".

# How heat pumps function

Heat pumps work following the principle of a refrigerator: the same technology, only for the opposite use. Refrigerators remove heat from food. They then release this into the room through slats on its rear.

Heat pumps extract heat from the air, earth or ground water in our surroundings. This heat that is obtained is prepared in the device and sent on to the hot water. Even if it is bitterly cold outside, the heat pump will still extract enough heat as is required for heating a house.

Example sketch of a brine/water heat pump with underfloor heating:



ca.  $\frac{3}{4}$  = environmental energy ca.  $\frac{1}{4}$  = external electrical energy

# Area of application

Each heat pump can be used in newly installed or existing heating systems under consideration of the ambient conditions, operating limits and applicable regulations.

Overview "Technical Data/Scope of Supply".



# Heat quantity recording

In addition to the proof of the unit's efficiency, EEWaermeGalso meets the demand for a heat quantity recording (hereafter refered to as HQR). The HQR is mandatory with air/water heat pumps. With brine/ water and water/water heat pumps, a HQR may only be set up when a forward flow temperature of  $\geq$  35 °C has been reached. The HQR must record the total warm energy release (heating and hot water) in the building. In heat pumps with heat quantity recording, the analysis is conducted by the regulator. The regulator displays the thermal energy that is exchanged from the heating system in kWh.

# Operation

Your decision to opt for a heat pump or heat pump system means you can now make a contribution to sparing the environment over many years thanks to low emissions and lower primary energy use.

You operate and control the heat pump system via the control panel of the heating and heat pump control.

#### <sub>ິງ</sub> NOTE.

Ensure that the control settings are correct.



Operating instructions for the heat and heat pump control.

To ensure that your heat pump or heat pump system operates efficiently and ecologically, the following are especially important:



#### ENERGY SAVING TIP

Avoid unnecessarily high flow temperatures. A lower flow temperature on the hot water side increases the efficiency of the system.



#### **ENERGY SAVING TIP**

When letting in fresh air, do not leave windows open for an extended period in order to save energy and reduce your heating costs.

# Care of the device

You can clean the surface of the device exterior with a damp cloth and standard cleaning agents.

Do not use cleaning and care agents which scour or which contain acid and/or chlorine. Media of this type would irreversibly damage the surfaces and possibly cause technical damage to the device.

### Device maintenance

The cooling circuit of the heat pump requires no regular maintenance.

According to EU regulation (EC) 517/2014, leak inspections and maintenance of a log book are required by law for certain heat pumps!



Log book for heat pumps, Section "Information on use of the log book".

The components of the heating circuit and the heat source (valves, expansion vessels, circulating pumps, filters, dirt traps) should be inspected as well as cleaned as needed - at the very least annually - by a qualified heating or cooling system technician.

The best solution is to conclude a service agreement with a heating installation company. This will carry out all the required maintenance work at regular intervals.

#### **CLEANING AND RINSING OF DEVICE COMPONENTS**

#### CAUTION!

Only customer service personnel authorised by the manufacturer may clean and rinse device components. Only liquids recommended by the manufacturer may be used for this.

After rinsing the condenser with chemical cleaning agents, a neutralisation of residues and intensive rinsing with water will be necessary. When doing so, observe the technical data of the relevant heat exchanger manufacturer.

# Faults

In the event of a fault, you can read off the cause of the fault via the diagnosis program of the heating and circulating pump control.



Operating instructions for the heat and heat pump control.



#### WARNING!

Only customer service personnel authorised by the manufacturer may carry out service and repair work on the components of the device.

# Scope of supply

Typical scope of supply arrangement:



Compact device with fullyhermetic compressor, all safetyrelevant components for cold circuit monitoring, built-in heating and heat pump control, sensors mounted in the device for recording the hot gas and hot water flow and return temperature

What to do first:

- (1) Check the supplied product for signs of external damage during delivery...
- (2) Check that nothing is missing from the scope of supply...

Immediately submit a complaint in the event of delivery defects.

NOTE.

Note device type.

Overview "Technical Data/Scope of Supply" or rating plate on the device.

# Set-up and Installation

For all work to be carried out:

#### $\hat{1}$ **NOTE.**

Observe the locally-applicable accident prevention regulations, statutory provisions, ordinances and directives.

#### NOTE.

Observe the noise data of the relevant device type.

Overview "Technical Data/Scope of Supply", section "Sound".

#### **INSTALLATION AREA**

#### ATTENTION

Install the heat pump only indoors. The installation room must be frost-free and dry.



#### WARNING!

Please note and follow the respective relevant local standards, directives and regulations applicable, especially the minimum volume necessary depending on the refrigerant capacity of the relevant heat pump system (EN 378-1).

| Refrigerant | Limit                  |
|-------------|------------------------|
| R 134a      | 0.25 kg/m <sup>3</sup> |
| R 404A      | 0.48 kg/m³             |
| R 407C      | 0.31 kg/m <sup>3</sup> |
| R 410A      | 0.44 kg/m³             |

Overview "Technical data/scope of delivery", "General unit data" section.

Minimum volume =

Refrigerant capacity [kg] Limit [kg/m³]

#### NOTE.

ñ

If several heat pumps of the same type are installed, only one heat pump must be considered. If several heat pumps of different types are installed, the heat pump with the largest refrigerant capacity must be considered.

#### TRANSPORT TO THE INSTALLATION SITE

Always comply with the following safety information during transport:



#### CAUTION!

Wear protective gloves.



#### WARNING!

Work with several persons during transport. Remember the weight of the device.

K)

 Overview "Technical Data/Scope of Supply", section "General Device Data".



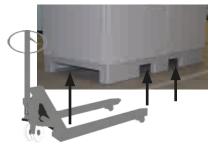
#### WARNING!

The unit can tip when being removed from the wooden pallet and during transport. This can result in personal injury and damage to the unit.

- Take suitable precautionary measures to eliminate the danger of tipping.

#### ATTENTION

Never use the components and hydraulic connections on the device for transportation purposes.


#### **ATTENTION**

Do not tilt the device more than 45° maximum (applies for every direction).

9

To avoid damage during transport, you should transport the unit to the final installation location in its original packaging (with packaging on the wooden pallet), using a lifting truck.

- (1) Remove packaging and set extra box aside (will be needed later on!)...
- (2) Transport the unit using a lifting truck...



#### INSTALLATION



#### **CAUTION!**

Several people are required to install the unit.

#### **NOTICE:**

Always comply with the dimensional drawings for the respektive size.



Overview "Dimensional drawings" and "Clearance dimensions".

#### ATTENTION

The heat pump must be placed on a load-bearing, horizontal base. Ensure that the base is designed for the weight of the heat pump. Do not use a rigid foam boiler platform!



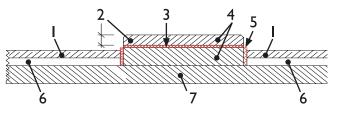
 Overview "Technical data/scope of delivery", "General unit data" section.

#### NOTE.

Set up the device so that the control side is accessible at all times!

#### ATTENTION

Do not tilt device more than  $45^{\circ}$  - applies for every direction!


#### NOTE.

The openings for the lifting truck must be closed with the covering plate supplied!.

Proceed as follows at the installation site:

(1) Place the device on a load-bearing and horizontal base, preferably insulated from structure-borne sound...

Detail drawing of concrete foundation:



- I Screed
- 2 Approx. 100 mm according to weight of heat pump
- 3 Insulation from structureborne sound according to weight of heat pump
- 4 Concrete foundation
- 5 Edge insulation strip
- 6 Impact sound insulation
- 7 Concrete cover

# Assembly of the Hydraulic Connections

#### ATTENTION

The heat source system must be designed corresponding to the specifications of the planning manual.

Heat pump guide and "Hydraulic connection" instructions.

#### notice:

Check to make sure that the diameters and lengths of the pipes for the heating circuit and for the heat source are sufficiently dimensioned.

#### **NOTICE:**

Circulating pumps must be multi-stage. They must be able to deliver at least the minimum flow rate required for your model.

Overview "Technical data/scope of delivery", "Heat source " and "Heat circuit" section.

#### ATTENTION

The hydraulic system must be equipped with a buffer tank, the required volume of which depends on the model of your unit.

#### **ATTENTION**

When installing the connections, always secure the connections on the unit from twisting, in order to prevent damage to the copper pipes in the interior of the unit.

(1) Mount shutoff devices on the heating circuit...

(2) Mount shutoff devices on the heat source...

#### NOTE.

The evaporator and liquefier of the heat pump can be rinsed, if necessary, when mounting the shutoff devices. (3) Position a ventilator at the highest point of the heat source in the heat source outlet...

You need to make the connection to the fixed pipework via the compensators (accessories)...

The compensators serve for vibration isolation...



(4) We recommend mounting a dirt filter (screen size 0.9 mm) at the heat source inlet connection (return)...

The hot water and heat source connections are marked correspondingly on the device.

- For the positioning of the connections, see dimensional diagram for the relevant device type.
- (5) Screw the compensators onto the connections on the unit until they bear against the rubber gasket...
- (6) Screw the compensators by hand onto the pipes of the heating circuit and the heat source until they bear against the rubber gasket...



Tighten all connections one or two turns to achieve a tight seal...

Do not overtighten. The rubber part of the compensators must not become twisted (torsion). This could cause malfunctions and even serious damage to the unit.

# Electrical connection work

For all work to be carried out:

#### DANGER!

Danger of fatal injury due to electric current!

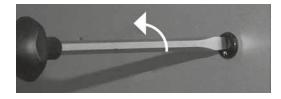
Electrical connections may be installed only by qualified electricians.

Before opening the unit, disconnect the system from the power supply and secure it from being switched back on!



#### WARNING!

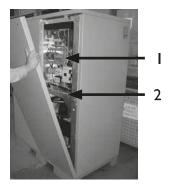
Observe the appropriate EN, VDE and/or locally applicable safety regulations during installation and when carrying out electrical work.


Observe the technical conditions of the relevant energy supply utility (if the latter requires this)!

#### <sub>ິງ</sub> NOTE.

All live wires must be <u>stripped</u> before they are installed in the cable duct of the switch cabinets!

(1) Remove the front panel from the device...


(2) Open the quick fastening screws of the front panel by rotating 90° anticlockwise...



(3) Take the front panel off its hinges and put in a safe place...



Gain an overview of the inside of the device...



I Electrical switch cabinet

2 Device intermediate bottom

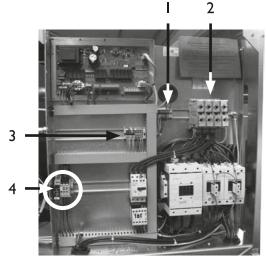
- (4) Open the electrical switch cabinets of the device... For this only loosen the upper two screws of the covering plate. Remove the remaining screws. The covering plate can then be taken off its hinges...
- (5) Route load and external control and sensor lines to the terminals via the cable duct. Tighten strain relief screws...
- (6) Make electrical connections according to the dimensional data of the terminal diagram and circuit diagrams...
- "Terminal Diagram" and "Circuit Diagrams".

#### ATTENTION.

Only carry out electrical work according to the terminal diagram and circuit diagrams applicable for the device type.

#### ATTENTION

Ensure clockwise rotary field of the load power supply (compressor).


 An incorrect rotary field of the compressor during operation can cause serious, irreparable damage to the compressor.

#### ATTENTION

The power supply for the heat pump must be equipped with an all-pole miniature circuitbreaker with at least 3 mm contact spacing to IEC 60947-2.

Note the level of the release current.

Overview "Technical Data/Scope of Supply", section "Electrics".



- I Connection for control
- 2 Connection for power compressor 3~PE
- 3 N/PE
- 4 Phase sequence relay

#### NOTE.

The control element of the heat and heat pump regulator can be a connection with a computer or network using an network cable designed for such pruposes, thus allowing the heating and heat pump regulator to be controlled remotely. If such a connection is desired, install a screened network cable (category 6, with RJ-45 plug) through the unit when installing the connections and run it through the front facade of the unit, parallel to the already-present heating and heat pump regulator control cable.

- Close the switch cabinet inside the device after finishing all the electrical work...
- 8 Close the front panel of the device if no further installation work is to be carried out directly afterwards.

### Rinsing, Filling and Ventilating the System

#### ATTENTION

The system must be absolutely free from air before commissioning.

#### **RINSING, FILLING AND BLEEDING THE HEAT SOURCE**

Dirt and deposits in the heat source can lead to malfunctions.

#### ATTENTION.

Before flushing and filling the heat source the drain pipe of the safety valve must be connected - Important: do not discharge into the drains (anti-freeze mixture)!.

#### NOTE

The following antifreezes are approved for the brine circuit:

Monoethylene glycol

#### **ATTENTION**

Ensure that the (pipe) materials, seals and other components used on site are made of materials that are compatible with the antifreeze used!

- (1) Rinse heat source system thoroughly...
- (2) Thoroughly mix the antifreeze available as an accessory with water in the required ratio. Only fill the heat source after mixing...

#### ATTENTION

The type amd concentration of the antifreeze in the water must have the value indicated for your device type.

- Overview "Technical Data/Scope of Supply", section "Heat Source".
- (3) Check the concentration of the antifreeze in the mixture...
- (4) Fill the heat source with antifreeze mixture...
- (5) Bleed the heat source.

#### FLUSHING AND FILLING THE HEATING CIRCUIT

#### WATER QUALITY

#### OF THE FILL AND ADDITIONAL WATER IN HOT WATER HEATING SYSTEMS ACCORDING TO VDI 2035 PART I AND II

Use of modern, energy-efficient heat pump systems is becoming increasingly widespread. Their ingenious technology enables these systems to achieve very good efficiencies. The decreasing space available for heat generators has led to the development of compact units with increasingly smaller cross-sections and high capacities. This means the complexity of the systems and the material diversity are also increasing, which plays an important role especially in their corrosion behaviour. The heating water not only affects the efficiency of the system, but also the life of the heat generator and the heating components of a system.

The guide values of VDI 2035 Part I and Part II must therefore be complied with as minimum requirements for proper operation of the systems. Our practical experience has shown that the safest and most troublefree running of the systems is achieved with so-called low-salt operation.

VDI 2035 Part I gives important information and recommendations regarding scaling and its prevention in heating and domestic hot water heating systems.

VDI 2035 Part II primarily deals with the requirements for reducing heating water corrosion in hot water heating systems.

#### PRINCIPLES OF PART I AND PART II

The occurrence of scaling and corrosion damage in hot water heating systems is low, if

- proper planning and commissioning is carried out
- the system is closed in corrosion terms
- adequately dimensioned pressurising is integrated
- the guide values for the heating water are complied with
- and regular servicing and maintenance are carried out.

A system log should be kept, in which the relevant planning data is entered (VDI 2035).

# DAMAGE THAT CAN OCCUR IN CASE OF NON-COMPLIANCE

- Malfunctions and the failure of components (e.g. pumps, valves)
- Internal and external leaks (e.g. from heat exchangers)
- Cross-section reduction and blockaging of components (e.g. heat exchanger, pipes, pumps)
- Material fatigue
- Gas bubbles and gas cushion formation (cavitation)
- Negative effect on heat transfer (formation of coatings, deposits) and associated noises (e.g. boiling noises, flow noises)

#### LIMESCALE - THE ENERGY KILLER

Filling with untreated drinking water inevitably leads to the precipitation of all calcium as scale. The consequence: limescale deposits form on the heat transfer surfaces of the heating. The efficiency falls and the energy costs rise. A rule of thumb is that I millimetre of limescale deposit causes an energy loss of 10%. In extreme cases it can even cause damage to the heat exchangers.

#### WATER SOFTENING TO VDI 2035 - PART I

If the water is softened before the heating is filled, in accordance with the VDI 2035 guidelines, no scale can form. This effectively and permanently prevents limescale deposits and the resulting negative effects on the entire heating system.

#### **CORROSION – AN UNDERESTIMATED PROBLEM**

VDI 2035, Part II, deals with the problem of corrosion. Softening the heating water can prove to be insufficient. The pH value can significantly exceed the limit of 10. pH values higher than 11 can set in, which even damage rubber seals. The VDI 2035, Part 1 guidelines are fulfilled, however, VDI 2035, Part 2 suggests a pH value between 8.2 and maximum 10.

If aluminium materials are used, which is the case in many modern heating systems, a pH value of 8.5 must not be exceeded, because otherwise there is a threat of corrosion – and aluminium is attacked without the presence of oxygen. Therefore, apart from softening the heating fill and additional water, the heating water should also be appropriately conditioned. This is the only way to comply with the VDI 2035 requirements and the recommendations and installation instructions of the heat pump manufacturer.

Part 2 of VDI 2035 also points out the reduction in total salt content (conductivity). The risk of corrosion is far lower if deionised water is used than is the case if the system is operated with salty, i.e. softened water.

Even if the water has been softened beforehand, it contains dissolved, corrosion-promoting salts, which act as electrolytes due to the use of different materials in the heating system and therefore accelerate corrosion processes. This can ultimately result in pitting.

#### ON THE SAFE SIDE WITH LOW-SALT OPERATION

The problems listed above do not occur at all with low-salt operation, as neither corrosive salts such as sulphates, chlorides and nitrates nor alkalising sodium hydrogen carbonate are in the heating water. The corrosive properties of deionised water are very low and in addition, fur cannot form in the boiler. This is the ideal approach for closed heating circuits, in particular, because low oxygen input into the heating circuit can also be tolerated.

In general, when the system is filled with deionised water, the pH value sets itself within the ideal range due to "self-alkalinisation". If necessary, a pH value of 8.2 can be very easily alkalised by adding chemicals. In this way, optimum protection of the entire heating system is achieved.

#### MONITORING

Analytical recording and monitoring of the relevant water values and the added active conditioning substances is of decisive importance. Therefore, they should be monitored regularly using appropriate water test equipment.

#### ATTENTION

The drainage pipe must be connected to the safety assembly before rinsing and filling the heat circuit.

(1) Thoroughly rinse heat circuit...

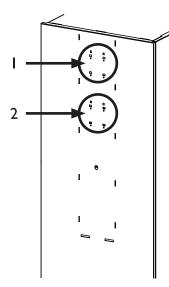
#### ° NOTE.

Rinse heat pump and heating circuit for about 5 minutes.

(2) Fill heat circuit...

(3) Bleed heat circuit.

### Isolation of the Hydraulic Connections

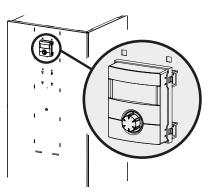

#### NOTE.

Insulate the heat source and heat circuit according to the standards and directives applicable locally.

- (1) Check leakproofness of all hydraulic connections. Perform pressure test...
- (2) Insulate all connections, vibration isolation, connections and lines of the heat circuit and heat source. Provide steam diffusion-tight heat source insulation.

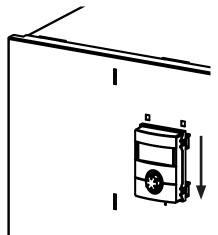

# Installation of the control element

Situated at different heights in the front facade of the unit are recesses (each with 4 recesses) for fastening the control element:

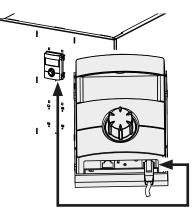



- I four upper recesses
- 2 four lower recesses

4 hooks are located on the back side of the control element and can be used to hang the control element on the front facade of the unit:




(1) Hang the control element's hooks on the recesses of the front facade (either in the upper or lower recesses)...




Example: Control element in upper recesses

2 Push the control element down until it locks into position...



3 Stick the heating and heat pump regulator's control cable into the **right** bushing on the bottom of the control element...



#### ° NOTE.

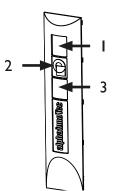
A connection to a computer or a network can be installed via the left bushing on the bottom of the control element, thus allowing the heating and heat pump regulator to be controlled remotely. One pre-condition is that a screened network cable (category 6) be installed through the unit when installing the unit.

Operating manual for the heating and heat pump regulator, version "Qualified technician", "Web server" section.

If this network cable is available, insert the network cable's RJ-45 plug into the left bushing of the control element.

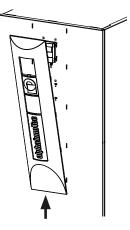
#### <sub>ິງ</sub> NOTE.

The network cable can be exchanged at any time. In order to be able to connect it, the screen must first be removed.

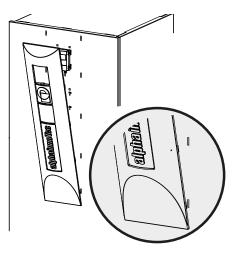

# Installation and removal of the screen

#### **INSTALLING THE SCREEN**

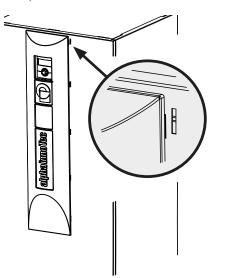
#### $_{11}^{\circ}$ NOTE.


The screen is provided at the time of delivery so that the control element may be inserted in the upper recesses of the front facade.

If the control element has been inserted in the lower recesses of the front facade, you must first remove the screen's temporary cover and then reinsert it above the logo.




Screen at time of delivery:

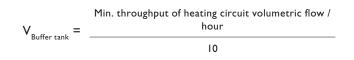

- I recess for control element
- 2 logo
- 3 temporary cover
- (1) First, insert the screen **below**, in the provided slots on the front of the facade...



(2) Beginning first on one side and moving upwards, lock the screen's snap-in lugs in place **in the slots** provided on the front of the facade...



- (3) Next, on the opposite side, moving upwards. Lock the screen's snap-in lugs in place in the slots provided on the front of the facade...
- (4) Finally, press the screen's upper snap-in lugs into the slots provided on the front of the facade.




#### **REMOVING THE SCREEN**

In order to remove the screen, the snap-in lugs must first be loosened by pressing one side completely toward the middle of the screen. Thereafter, remove the snap-in lugs from the opposite side.

# Buffer tank

Hydraulic integration of the heat pump requires a buffer tank in the heating circuit. The volume required for the buffer tank can be derived from the following formula:



For the minimum throughput of the heating circuit volumetric flow, see the overview "Technical Data/scope of Supply", section "Heating Circuit".

# **Circulation Pumps**

#### ATTENTION.

Always note the model. Do not use regulated circulating pumps. Circulating pumps and domestic hot water circulation pumps must be multi-stage, regulated pumps.

#### **NOTE:**

The minimum hot water, heat source volumetric flow must be ensured!

#### NOTE:

The viscosity of the brine must be observed when dimensioning the heat source circulating pump!

#### note:

A motor protection switch for the heat source circulating pump is integrated in the heat pump!

Setting range "Technical Data/Scope of Supply" Electrics

For the minimum volumetric flow rate of the heat circuit/heat source, see overview "Technical Data/Scope of Supply" section "Heat Circuit" "Heat Source" for the relevant type.

## Domestic Hot Water Preparation

The domestic hot water preparation with the heat pump requires a further hot water circuit in addition (parallel) to the heating circuit. During integration, ensure that the domestic hot water loading is not routed through the buffer tank of the heating circuit.

Tip "Hydraulic Integration".

# Domestic Hot Water Tank

If the heat pump is to prepare domestic hot water, you need to incorporate special domestic hot water tanks in the heat pump system. Select the tank volume so that the required domestic hot water volume is also available during a power failure of the public supply utility.

#### $\hat{\mathbb{I}}$ **NOTE:**

The heat exchanger area of the domestic hot water tank must be dimensioned in such way that the heating capacity of the heat pump is transferred with as little spread as possible.

We shall be pleased to offer domestic hot water tanks from our product range. They are optimally tailored to your heat pump.

#### **NOTE:**

Integrate the domestic hot water tank in the heat pump system in such way that it corresponds to the hydraulic scheme suitable for your system.

## Commissioning

° NOTE.

The commissioning has to be in the heating mode.

(1) Carry out a thorough installation check and work through the general checklist...

Manufacturer's homepage.

By checking the installation you prevent damage to the heat pump system, which could be caused by work carried out improperly.

Check that...

- **clockwise rotary field** of the load power supply (compressor) is ensured.
- The heat pump **installation and assembly** have been carried out according to the requirements of this operating manual.
- the electrical installation work has been completed properly.
- The power supply for the heat pump must be equipped with an all-pole automatic circuitbreaker with at least 3 mm contact spacing to IEC 60947-2.
- The heating circuit is flushed, filled and thoroughly vented.
- All valves and shut-off devices of the heating circuit are open.
- All pipe systems and components of the system are leaktight.
- (2) Carefully fill out and sign the completion report for heat pump systems...

Manufacturer's homepage.

(3) Within Germany and Austria:

Send completion report for heat pump systems and general checklist to the manufacturer's factory customer service department...

In other countries:

Send completion report for heat pump systems and general checklist to the manufacturer's local partner...

(4) The heat pump system is commissioned by customer service personnel authorised by the manufacturer. There is a fee for starting up!

### Deinstallation



#### DANGER!

Danger of fatal injury due to electric current!

Electrical connections may be installed only by qualified electricians.

Before opening the unit, disconnect the system from the power supply and secure it from being switched back on!



#### WARNING!

Only qualified heating and refrigerating plant technicians may remove the device from the system.

#### ATTENTION

The antifreeze mixture of the heat source must not be disposed of into the sewerage system. Collect antifreeze mixture and dispose of properly.

#### ATTENTION

Provide the device components, coolant and oil for recycling or properly dispose of them corresponding to the applicable regulations, standards and directives.

**REMOVING THE BACKUP BATTERY** 

#### ATTENTION

Before scrapping the heating and heat pump control, remove the backup battery on the processor circuit board. The battery can be pushed out using a screwdriver. Properly dispose of the battery and electronic components in line with environmental requirements.



# Technical Data/Scope of Supply

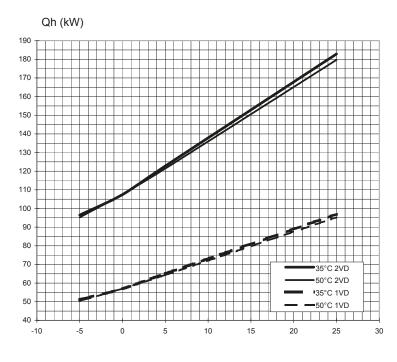
| Heat pump type            | Brine/Water I               | Air/Water I Water/Water                                                                   |                                 |                     | • relevant 1 — not relevant        |
|---------------------------|-----------------------------|-------------------------------------------------------------------------------------------|---------------------------------|---------------------|------------------------------------|
| Installation location     | Indoors I Ou                | tdoors                                                                                    |                                 |                     | • relevant 1 — not relevant        |
| Conformity                |                             |                                                                                           |                                 |                     | CE                                 |
| Power data                | Heating power               | /COP at                                                                                   |                                 |                     |                                    |
|                           | B0/W35                      | Standard point as per EN255                                                               | 2 Compressors<br>1 Compressor   |                     | kW I<br>kW I                       |
|                           | B0/W50                      | Standard point as per EN255                                                               | 2 Compressors<br>1 Compressor   |                     | kW i<br>kW i                       |
|                           | B-5/W35                     | Standard point as per EN255                                                               | 2 Compressors<br>1 Compressor   |                     | kW I<br>kW I                       |
|                           | B-0/W45                     | Standard point as per EN14511                                                             | 2 Compressors<br>1 Compressor   |                     | kW i<br>kW i                       |
| Operating limits          | Heat circuit<br>Heat source |                                                                                           |                                 |                     | °C                                 |
| Naiaa                     | Additional oper             |                                                                                           | overeged (in free field)        |                     |                                    |
| Noise                     |                             | e level at 1m gap around the machine evel as per EN12102                                  |                                 |                     | dB(A)<br>dB                        |
| Heat source               |                             |                                                                                           | aughaut i maximum throughaut    |                     |                                    |
| Heat source               |                             | v: minimum throughput 1 nominal throughput 1 nominal through $\Delta p$ 1 Volumetric flow |                                 |                     | l/h<br>bar ۱ l/h                   |
|                           |                             | d brine circulating pump                                                                  |                                 |                     | uar i 1/11                         |
|                           |                             | sion of the recommended pump at nom                                                       |                                 |                     | barıl/h                            |
|                           | Antifreeze                  |                                                                                           |                                 |                     | Monoethylene glycol                |
|                           |                             | entration I frostproof to                                                                 |                                 |                     | % I °C                             |
| Heat circuit              |                             | w: minimum throughput i nominal thr                                                       | oughout i maximum throughout    |                     | 1/b                                |
| neat chount               |                             | in heat pump ∆p ı Volumetric flow                                                         |                                 |                     | bor                                |
|                           |                             | sion of heat pump $\Delta p$ I Volumetric flow                                            | <br>W                           |                     | har i l/b                          |
|                           |                             | pread for B0/W35                                                                          | **                              |                     | K                                  |
| General device data       |                             | ensional diagram for the size indicated                                                   | )                               |                     | Size                               |
|                           | Total weight                |                                                                                           |                                 |                     | ka                                 |
|                           | Total weight                | Extra weight of construction unit 1                                                       |                                 |                     | ka                                 |
|                           |                             | Extra weight of construction unit 2                                                       |                                 |                     | ka                                 |
|                           | Connections                 | Heat circuit                                                                              |                                 |                     |                                    |
|                           | Connocatione                | Heat source                                                                               |                                 |                     |                                    |
|                           | Refrigerant                 | Refrigerant type I Filling capaci                                                         |                                 |                     | і kg                               |
| Electrics                 | 0                           | All-note circuit breaker for nump *)                                                      | -                               |                     |                                    |
|                           |                             | Control voltage circuit breaker *)                                                        |                                 |                     | · · ·                              |
|                           |                             | Electrical heating element circuit brea                                                   | <br>ker *)                      |                     |                                    |
| Heat pump                 |                             | onsumption in the normal point B0/W35 as per E                                            |                                 | nsumption ( cosø    |                                    |
|                           |                             | hine current within the operating limits                                                  |                                 |                     | ٨                                  |
|                           |                             | at direct , with clow starter                                                             |                                 |                     | A . A                              |
|                           | Protection type             |                                                                                           |                                 |                     | ID                                 |
|                           |                             | rical heating element 3 1 2 1 1-pl                                                        | <br>nase                        |                     | kW i kW i kW                       |
| Components                |                             | np for heat circuit at nominal throughpu                                                  | It: Power consumption   Current | concumption         | kW i A                             |
|                           |                             | np for heat source at nominal throughp                                                    |                                 | t a a nourmetion    | kW i A                             |
|                           |                             | for motor protection switch of heat sour                                                  |                                 |                     | A                                  |
| Passive cooling function  |                             | ces with ID K: Cooling power at nominal volume                                            |                                 | t water)            | kW                                 |
| Safety devices            |                             | bly for heat circuit I Safety assembly                                                    |                                 |                     | in scope of supply: • yes — no     |
| Heating and heat pump cor | -                           |                                                                                           |                                 |                     | in scope of supply: • yes — no     |
| Electronic soft-starter   |                             |                                                                                           |                                 |                     | integrated: • yes — no             |
| Expansion vessels         |                             | cope of supply I Volume I Supply<br>cope of supply I Volume I Supply I                    |                                 |                     | •yes — noılıbar<br>•yes — noılıbar |
| Overflow valve            |                             |                                                                                           | sioodito                        |                     | integrated: • yes — no             |
| Vibration isolation       | Heat circuit 1              | Heat source                                                                               |                                 |                     | in scope of supply: • yes — no     |
|                           |                             |                                                                                           |                                 |                     | In scope of supply. • yes — 10     |
| UK813198a                 |                             |                                                                                           | *) Observe                      | e local regulations | n.n. = cannot be demonstrated      |



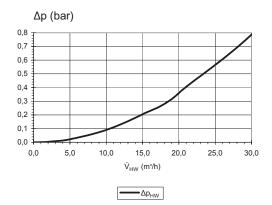
| SWP1100                     | SWP1250                   | SWP1600                   |
|-----------------------------|---------------------------|---------------------------|
| •1-1-                       | •   -   -                 | •   -   -                 |
| •1-                         | •1-                       | •1-                       |
|                             | •                         | •                         |
|                             |                           |                           |
| 107,5 ı 4,3                 | 125,1 i 4,3               | 161,6 ı 4,4               |
| 57,0 ι 4,4                  | 66,3 1 4,4                | 85,6 1 4,5                |
| 107,6 і 3,1                 | 125,2 1 3,1               | 161,8 і 3,2               |
| <br>57,1 ı 3,2              | 66,4   3,2                | 85,8   3,3                |
| 96,5 i 3,9                  | 112,3 1 3,9               | 145,1 i 4,0               |
| <br>51,2 + 4,0              | 59,5 1 4,0                | 76,9   4,1                |
| 100,0 г 3,2<br>53,0 г 3,3   | 116,3 г 3,2<br>61,7 г 3,3 | 150,3 г 3,3<br>76,6 г 3,3 |
| 20 - 55                     | 20 - 55                   | 20 - 55                   |
| <br>-5 - 25                 | -5 - 25                   | -5 - 25                   |
| <br>0 20                    |                           |                           |
| 62                          | 64                        | 66                        |
| <br>                        |                           |                           |
| 20000   20000   38400       | 22300   22300   44600     | 29100 ı 29100 ı 58200     |
| <br>0,23   20000            | 0,18   22300              | 0,26   29100              |
| <br>Grundfos UPS 50-180F    | Grundfos UPS 65-180F      | Grundfos UPS 65-180F      |
| <br>0,9                     | 1,06                      | 0,92                      |
| <br>•                       | •                         | •                         |
| <br>25 ı -13                | 25   -13                  | 25   -13                  |
| 9500 i 10500 i 21000        | 10700 i 11500 i 23000     | 13900   15200   30400     |
| <br>0,1 1 10500             | 0,06   11500              | 0,07   15200              |
| <br>                        | 0,00111000                | — I —                     |
| <br><u> </u>                | 9,3                       | 9,1                       |
| 2                           | 2                         | 2                         |
| <br>                        | 935                       | 1000                      |
| <br>870                     | 900                       | 1000                      |
| <br>                        | —                         | —                         |
| <br><br>DN50 DIN2566        | DN65 DIN2566              | <br>DN65 DIN2566          |
| <br>                        |                           |                           |
| <br>DN65 DIN2566            | DN65 DIN2566              | DN65 DIN2566              |
| R407c I 19,0                | R407c I 18,8              | R407c I 20,7              |
| <br>3~/PE/400V/50Hz   C100  | 3~/PE/400V/50Hz   C125    | 3~/PE/400V/50Hz   C125    |
| <br>1~/N/PE/230V/50Hz I B10 | 1~/N/PE/230V/50Hz I B10   | 1~/N/PE/230V/50Hz I B10   |
| <br>—   —                   | — I —                     |                           |
| <br>25,0 i 2x24,6 i 0,74    | 29,1 i 2x28,8 i 0,73      | 36,7   2x33,4   0,79      |
| <br>2 x 38,6                | 2 x 47,0                  | 2 x 58,7                  |
| <br>225   130               | 270   146                 | 310   270                 |
| <br>20                      | 20                        | 20                        |
| <br><u> </u>                | <u> </u>                  |                           |
| <br>— I —                   | — I —                     |                           |
| <br>1,0   2,0               | 1,55   2,9                | 1,55 1 2,9                |
| 1,8 - 2,5                   | 2,8 - 4,0                 | 2,8 - 4,0                 |
| -                           | -                         | -                         |
|                             |                           |                           |
| •                           | •                         | •                         |
| •                           | •                         | •                         |
| <br>—I—                     | — I —                     | -1-                       |
|                             | — I —                     | -1-                       |
| —                           | _                         | -                         |
| —                           | —                         | —                         |
| 813148-c                    | 813146-c                  | 813149-c                  |
|                             |                           |                           |



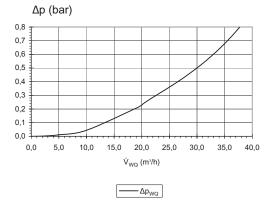
# Technical Data/Scope of Supply


| Heat pump type            | Brine/Water I               | Air/Water I Water/Water                                                                   |                                 |                     | • relevant 1 — not relevant        |
|---------------------------|-----------------------------|-------------------------------------------------------------------------------------------|---------------------------------|---------------------|------------------------------------|
| Installation location     | Indoors I Ou                | tdoors                                                                                    |                                 |                     | • relevant 1 — not relevant        |
| Conformity                |                             |                                                                                           |                                 |                     | CE                                 |
| Power data                | Heating power               | /COP at                                                                                   |                                 |                     |                                    |
|                           | B0/W35                      | Standard point as per EN255                                                               | 2 Compressors<br>1 Compressor   |                     | kW I<br>kW I                       |
|                           | B0/W50                      | Standard point as per EN255                                                               | 2 Compressors<br>1 Compressor   |                     | kW i<br>kW i                       |
|                           | B-5/W35                     | Standard point as per EN255                                                               | 2 Compressors<br>1 Compressor   |                     | kW I<br>kW I                       |
|                           | B-0/W45                     | Standard point as per EN14511                                                             | 2 Compressors<br>1 Compressor   |                     | kW i<br>kW i                       |
| Operating limits          | Heat circuit<br>Heat source |                                                                                           |                                 |                     | °C                                 |
| Naiaa                     | Additional oper             |                                                                                           | overeged (in free field)        |                     |                                    |
| Noise                     |                             | e level at 1m gap around the machine evel as per EN12102                                  |                                 |                     | dB(A)<br>dB                        |
| Heat source               |                             |                                                                                           | aughaut i maximum throughaut    |                     |                                    |
| Heat source               |                             | v: minimum throughput 1 nominal throughput 1 nominal through $\Delta p$ 1 Volumetric flow |                                 |                     | l/h<br>bar ۱ l/h                   |
|                           |                             | d brine circulating pump                                                                  |                                 |                     | uar i 1/11                         |
|                           |                             | sion of the recommended pump at nom                                                       |                                 |                     | barıl/h                            |
|                           | Antifreeze                  |                                                                                           |                                 |                     | Monoethylene glycol                |
|                           |                             | entration I frostproof to                                                                 |                                 |                     | % I °C                             |
| Heat circuit              |                             | w: minimum throughput i nominal thr                                                       | oughout i maximum throughout    |                     | 1/b                                |
| neat chount               |                             | in heat pump ∆p ı Volumetric flow                                                         |                                 |                     | bor                                |
|                           |                             | sion of heat pump $\Delta p$ I Volumetric flow                                            | <br>W                           |                     | har i l/b                          |
|                           |                             | pread for B0/W35                                                                          | **                              |                     | K                                  |
| General device data       |                             | ensional diagram for the size indicated                                                   | )                               |                     | Size                               |
|                           | Total weight                |                                                                                           |                                 |                     | ka                                 |
|                           | Total weight                | Extra weight of construction unit 1                                                       |                                 |                     | ka                                 |
|                           |                             | Extra weight of construction unit 2                                                       |                                 |                     | ka                                 |
|                           | Connections                 | Heat circuit                                                                              |                                 |                     |                                    |
|                           | Connocatione                | Heat source                                                                               |                                 |                     |                                    |
|                           | Refrigerant                 | Refrigerant type I Filling capaci                                                         |                                 |                     | і kg                               |
| Electrics                 | 0                           | All-note circuit breaker for nump *)                                                      | -                               |                     |                                    |
|                           |                             | Control voltage circuit breaker *)                                                        |                                 |                     | · · ·                              |
|                           |                             | Electrical heating element circuit brea                                                   | <br>ker *)                      |                     |                                    |
| Heat pump                 |                             | onsumption in the normal point B0/W35 as per E                                            |                                 | nsumption ( cosø    |                                    |
|                           |                             | hine current within the operating limits                                                  |                                 |                     | ٨                                  |
|                           |                             | at direct , with clow starter                                                             |                                 |                     | A . A                              |
|                           | Protection type             |                                                                                           |                                 |                     | ID                                 |
|                           |                             | rical heating element 3 1 2 1 1-pl                                                        | <br>nase                        |                     | kW i kW i kW                       |
| Components                |                             | np for heat circuit at nominal throughpu                                                  | It: Power consumption   Current | concumption         | kW i A                             |
|                           |                             | np for heat source at nominal throughp                                                    |                                 | t a a nourmetion    | kW i A                             |
|                           |                             | for motor protection switch of heat sour                                                  |                                 |                     | A                                  |
| Passive cooling function  |                             | ces with ID K: Cooling power at nominal volume                                            |                                 | t water)            | kW                                 |
| Safety devices            |                             | bly for heat circuit I Safety assembly                                                    |                                 |                     | in scope of supply: • yes — no     |
| Heating and heat pump cor | -                           |                                                                                           |                                 |                     | in scope of supply: • yes — no     |
| Electronic soft-starter   |                             |                                                                                           |                                 |                     | integrated: • yes — no             |
| Expansion vessels         |                             | cope of supply I Volume I Supply<br>cope of supply I Volume I Supply I                    |                                 |                     | •yes — noılıbar<br>•yes — noılıbar |
| Overflow valve            |                             |                                                                                           | sioodito                        |                     | integrated: • yes — no             |
| Vibration isolation       | Heat circuit                | Heat source                                                                               |                                 |                     | in scope of supply: • yes — no     |
|                           |                             |                                                                                           |                                 |                     | In scope of supply. • yes — 10     |
| UK813198a                 |                             |                                                                                           | *) Observe                      | e local regulations | n.n. = cannot be demonstrated      |




| SWP700H                     | SWP850H                  | SWP1000H                 |
|-----------------------------|--------------------------|--------------------------|
| •   -   -                   | •1-1-                    | •   -   -                |
| •   —                       | •   —                    | •   —                    |
| •                           | •                        | •                        |
|                             |                          |                          |
| 70,0 1 4,1                  | 88,0 1 4,1               | 100,0 1 4,1              |
| <br>37,1 + 4,2              | 46,5 1 4,2               | 53,0 1 4,2               |
| 66,8 I 3,0<br>32,7 I 3,0    | 86,4 i 3,0<br>42,5 i 3,2 | 93,0 I 2,8<br>49,3 I 2,9 |
| <br>58,8   3,6              | 78,0   3,8               | 89,8   3,7               |
| <br>29,4   3,6              | 40,5 1 4,0               | 47,6   3,8               |
| 65,1 i 3,2                  | 81,8   3,2               | 93,0 I 3,2               |
| 34,5 i 3,1                  | 43,2 i 3,1<br>20 - 65    | 49,3 i 3,1               |
| <br>20 - 65<br>-5 - 25      | -5 - 25                  | 20 - 65<br>-5 - 25       |
| <br>B5 I W70                | B5 I W70                 | B5 I W70                 |
| 64                          | 64                       | 68                       |
| <br>                        |                          |                          |
| 12400 ı 16500 ı 24800       | 14800 ı 14800 ı 29600    | 18000 ı 18000 ı 36000    |
| <br>0,16   16500            | 0,09 ι 14800             | 0,18   18000             |
| <br>Grundfos UPS 50-180F    | Grundfos UPS 50-180F     | Grundfos UPS 50-180F     |
| 1,10                        | 1,16                     | 1,01                     |
| •                           | •                        | •                        |
| 25   -13                    | 25   -13                 | 25 ı -13                 |
| <br>6000   6600   13200     | 7200   8200   16400      | 7850   9400   17000      |
| <br>0,04 1 6600             | 0,05   8200              | 0,08   9400              |
| <br>— I —                   | — I —                    |                          |
| 9,1                         | 8,8                      | 9,1                      |
| <br>2                       | 2                        | 2                        |
| <br>930                     | 935                      | 965                      |
| <br>                        |                          |                          |
| <br><br>DN50 DIN2566        | <br>DN50 DIN2566         | <br>DN50 DIN2566         |
| <br>DN65 DIN2566            | DN65 DIN2566             | DN65 DIN2566             |
| <br>R134a I 15,5            | R134a I 17,0             | R134a   17,6             |
| 3~/PE/400V/50Hz i C80       | 3~/PE/400V/50Hz i C80    | 3~/PE/400V/50Hz i C100   |
| <br>1~/N/PE/230V/50Hz I B10 | 1~/N/PE/230V/50Hz I B10  | 1~/N/PE/230V/50Hz I B10  |
| <br>— I —                   | — I —                    | _ I _                    |
| <br>17,1 ı 2x19,2 ı 0,65    | 20,5 i 2x22,8 i 0,65     | 24,3 I 2x27,6 I 0,65     |
| <br>2 x 29,3                | 2 x 37,9                 | 2 x 45,6                 |
| <br>215   130               | 270   146                | 310   270                |
| <br>20                      | 20                       | 20                       |
| <br>_   _   _               | _   _   _                |                          |
| <br>— I —                   |                          | -1-                      |
| <br>1,0   2,0               | 1,0   2,0                | 1,0 1 2,0                |
| 1,8 - 2,5                   | 1,8 - 2,5                | 1,8 - 2,5                |
| -                           | <u> </u>                 | -                        |
|                             |                          |                          |
| •                           | •                        | •                        |
| -1-                         | -1-                      | -1-                      |
| <br><br>                    | <br>                     | <br>                     |
| _                           | _                        | _                        |
| _                           | _                        | _                        |
|                             |                          |                          |
| 813150-d                    | 813151-c                 | 813152-d                 |

## SWP 1100


### Power Curves



Temp<sub>WQ</sub> (°C)



Temp<sub>WQ</sub> (°C)



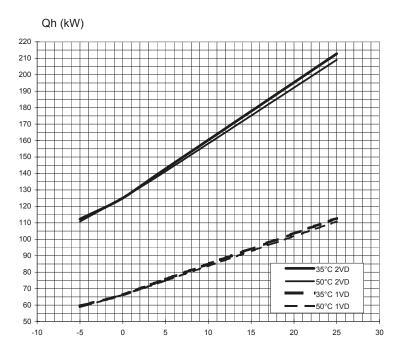
COP

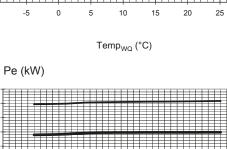
-5

Pe (kW)

Temp<sub>WQ</sub> (°C)

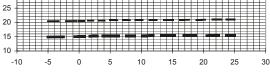
2 – -10


-10

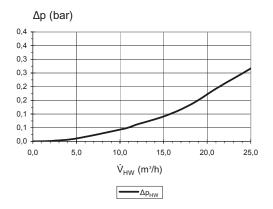

-5

| Legend:            | UK823025L                                      |
|--------------------|------------------------------------------------|
| ΎHW                | Volume flow, heating water                     |
|                    | Volume flow, heat source                       |
| Temp <sub>WQ</sub> | Temperature, heat source                       |
| Qh                 | Heating capacity                               |
| Pe                 | Power consumption                              |
| COP                | Coefficient of performance / efficiency rating |
| Δp <sub>HW</sub>   | Pressure loss heat circuit                     |
| $\Delta p_{WQ}$    | Pressure loss heat source                      |
| VD                 | Compressor(s)                                  |
|                    |                                                |

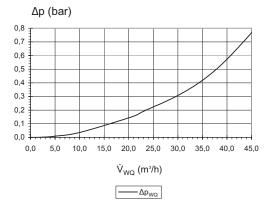
### Power Curves


# SWP 1250





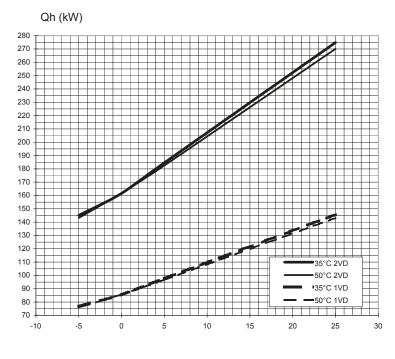

COP


-10

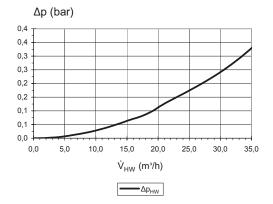


Temp<sub>WQ</sub> (°C)

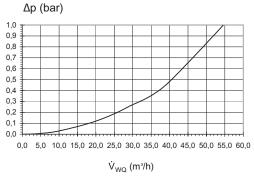



Temp<sub>WQ</sub> (°C)




| UK823025L                                      |
|------------------------------------------------|
| Volume flow, heating water                     |
| Volume flow, heat source                       |
| Temperature, heat source                       |
| Heating capacity                               |
| Power consumption                              |
| Coefficient of performance / efficiency rating |
| Pressure loss heat circuit                     |
| Pressure loss heat source                      |
| Compressor(s)                                  |
|                                                |

# SWP 1600


### Power Curves



Temp<sub>WQ</sub> (°C)



Temp<sub>WQ</sub> (°C)



COP

-5

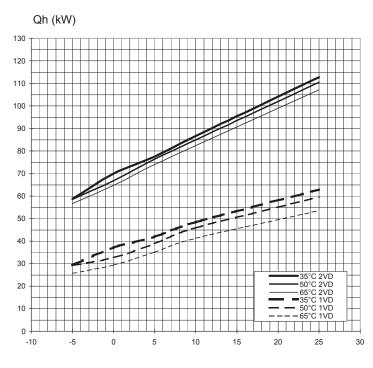
Pe (kW)

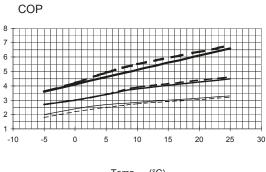
Temp<sub>WQ</sub> (°C)

2 – -10

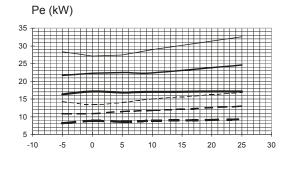
15 🖡

-10

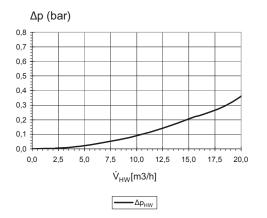

-5


\_\_\_\_Δp<sub>WQ</sub>

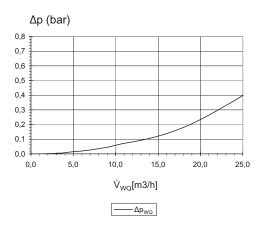
| Legend:            | UK823025L                                      |
|--------------------|------------------------------------------------|
| Υ <sub>HW</sub>    | Volume flow, heating water                     |
|                    | Volume flow, heat source                       |
| Temp <sub>WQ</sub> | Temperature, heat source                       |
| Qh                 | Heating capacity                               |
| Pe                 | Power consumption                              |
| COP                | Coefficient of performance / efficiency rating |
| Δp <sub>HW</sub>   | Pressure loss heat circuit                     |
| $\Delta p_{WQ}$    | Pressure loss heat source                      |
| VD                 | Compressor(s)                                  |
|                    |                                                |


### Power Curves

### SWP 700H







Temp<sub>WQ</sub> (°C)

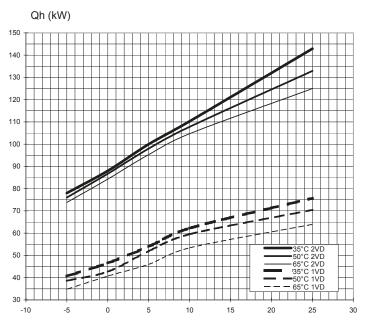


Temp<sub>WQ</sub> (°C)

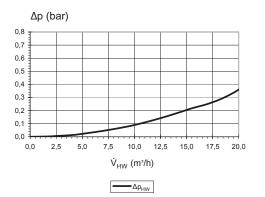


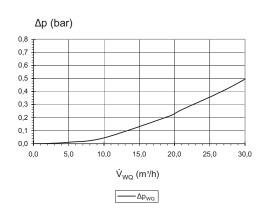





| Lenende            |                                                |
|--------------------|------------------------------------------------|
| Legend:            | UK823025L                                      |
| Ϋ́ <sub>HW</sub>   | Volume flow, heating water                     |
| V <sub>WQ</sub>    | Volume flow, heat source                       |
| Temp <sub>WQ</sub> | Temperature, heat source                       |
| Qh                 | Heating capacity                               |
| Pe                 | Power consumption                              |
| COP                | Coefficient of performance / efficiency rating |
| $\Delta p_{HW}$    | Pressure loss heat circuit                     |
| Δp <sub>WQ</sub>   | Pressure loss heat source                      |
| VD                 | Compressor(s)                                  |
|                    |                                                |

# SWP 850H


# Power Curves


Temp<sub>WQ</sub> (°C)

+



Temp<sub>WQ</sub> (°C)





COP

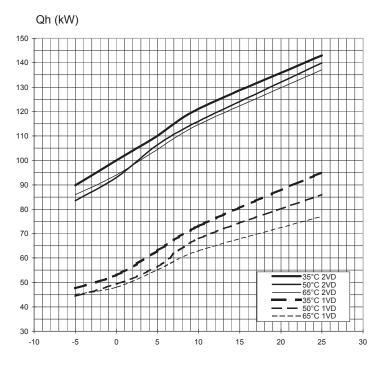
-5

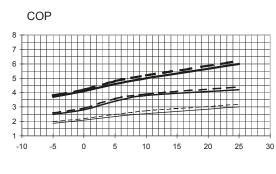
Pe (kW)

1 -10

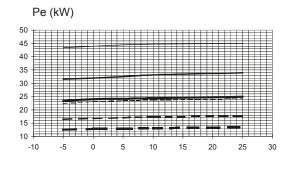
10 🗏

-10


-5

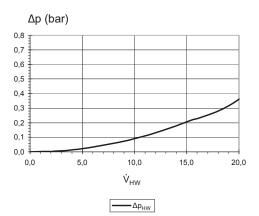

Temp<sub>WQ</sub> (°C)

| Legend:            | UK823025L                                      |
|--------------------|------------------------------------------------|
| Υ <sub>HW</sub>    | Volume flow, heating water                     |
| Ύ <sub>WQ</sub>    | Volume flow, heat source                       |
| Temp <sub>WQ</sub> | Temperature, heat source                       |
| Qh                 | Heating capacity                               |
| Pe                 | Power consumption                              |
| COP                | Coefficient of performance / efficiency rating |
| $\Delta p_{HW}$    | Pressure loss heat circuit                     |
| Δp <sub>WQ</sub>   | Pressure loss heat source                      |
| VD                 | Compressor(s)                                  |
|                    |                                                |

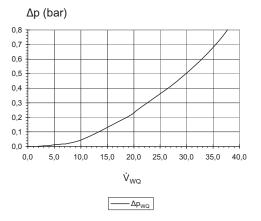

### Power Curves








Temp<sub>WQ</sub> (°C)



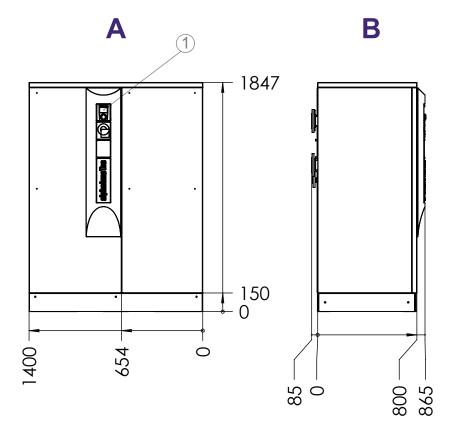

Temp<sub>WQ</sub> (°C)

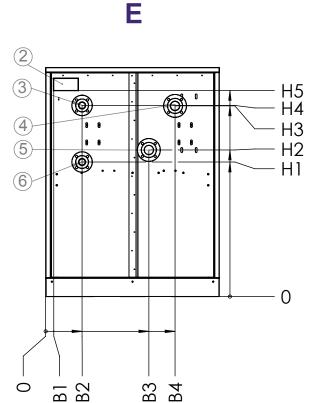
 $\mathsf{Temp}_{\mathsf{WQ}}$  (°C)








823042-a


| Legend:            | UK823025L                                      |
|--------------------|------------------------------------------------|
| Ϋ́ <sub>ΗW</sub>   | Volume flow, heating water                     |
| V <sub>WQ</sub>    | Volume flow, heat source                       |
| Temp <sub>WQ</sub> | Temperature, heat source                       |
| Qh                 | Heating capacity                               |
| Pe                 | Power consumption                              |
| COP                | Coefficient of performance / efficiency rating |
| Δp <sub>HW</sub>   | Pressure loss heat circuit                     |
| Δp <sub>WQ</sub>   | Pressure loss heat source                      |
| VD                 | Compressor(s)                                  |



# SWP 1100 – 1250 / SWP 700H – 1000H

Dimensional diagrams



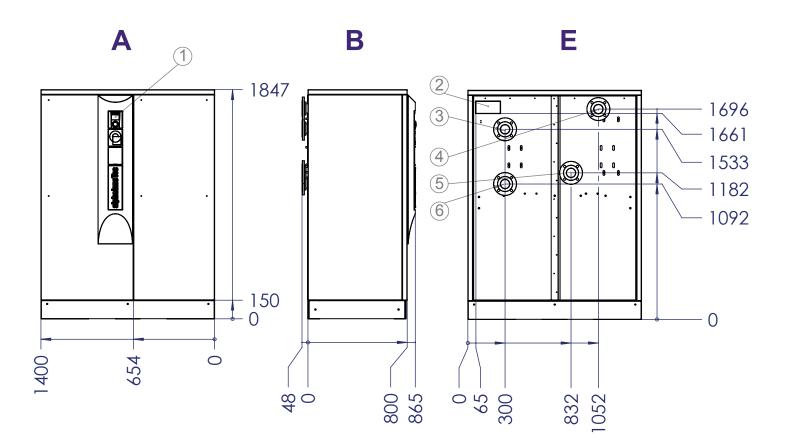


| Legend:    | UK819162~e  |
|------------|-------------|
| All dimens | ions in mm. |
|            |             |

- A Front view
- B Side view from left

| E | Rear view |
|---|-----------|
|   |           |

- POS Designation
  - 1 Control panel
    - 2 Sleeves for electrical / sensor cables
    - 3 Hot water outlet (flow), flange DIN 2566
    - 4 Heat source inlet, flange DIN 2566
    - 5 Heat source outlet, flange DIN 2566
    - 6 Hot water inlet (return), flange DIN 2566


#### Dimensioning table

| Туре                             | H1           | H2           | H3           | H4           | H5           | B1       | B2 | B3 | B4 | 3            | 4 | 5 | 6 |
|----------------------------------|--------------|--------------|--------------|--------------|--------------|----------|----|----|----|--------------|---|---|---|
| SWP 1100, 700H-1000H<br>SWP 1250 | 1085<br>1092 | 1182<br>1182 | 1537<br>1537 | 1541<br>1533 | 1661<br>1661 | 65<br>65 |    |    |    | DN50<br>DN65 |   |   |   |



# Dimensional diagrams

SWP 1600



Legend: UK819163~e All dimensions in mm.

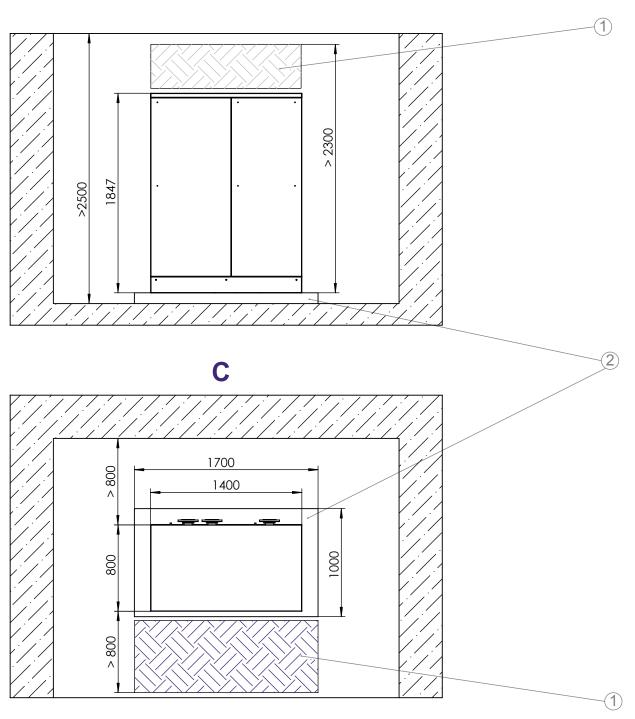
| A | Front view          |
|---|---------------------|
| В | Side view from left |
| E | Rear view           |

#### POS Designation

#### 1 Control panel

- 2 Sleeves for electrical / sensor cables
- 3 Hot water outlet (flow)
- 4 Heat source inlet
- 5 Heat source outlet
- 6 Hot water inlet (return)

#### Connections


Flange 2 1/2" DIN 2566 Flange 2 1/2" DIN 2566 Flange 2 1/2" DIN 2566 Flange 2 1/2" DIN 2566

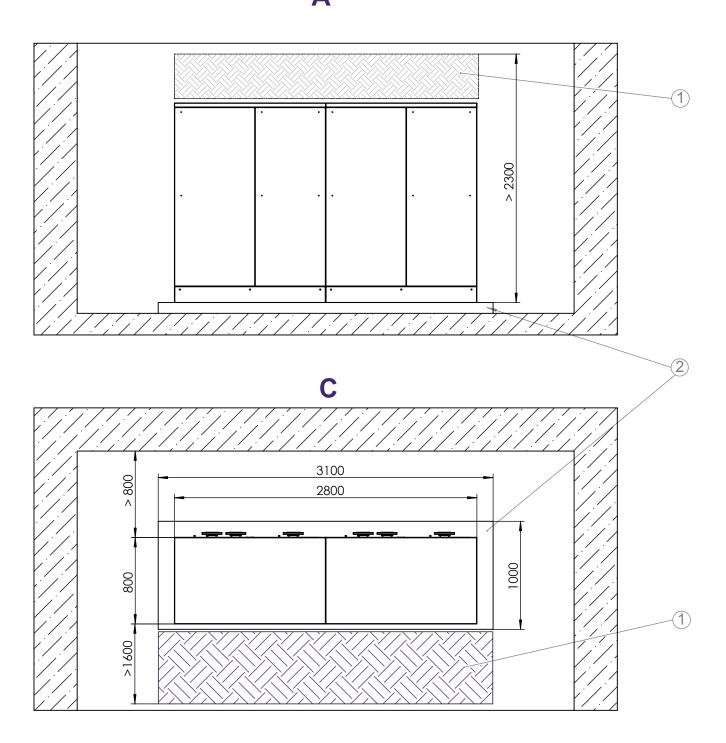


# SWP 1100 - 1600 / SWP 700H - 1000H

Installation plan 1/2

Α




Legend: UK819166~b All dimensions in mm.

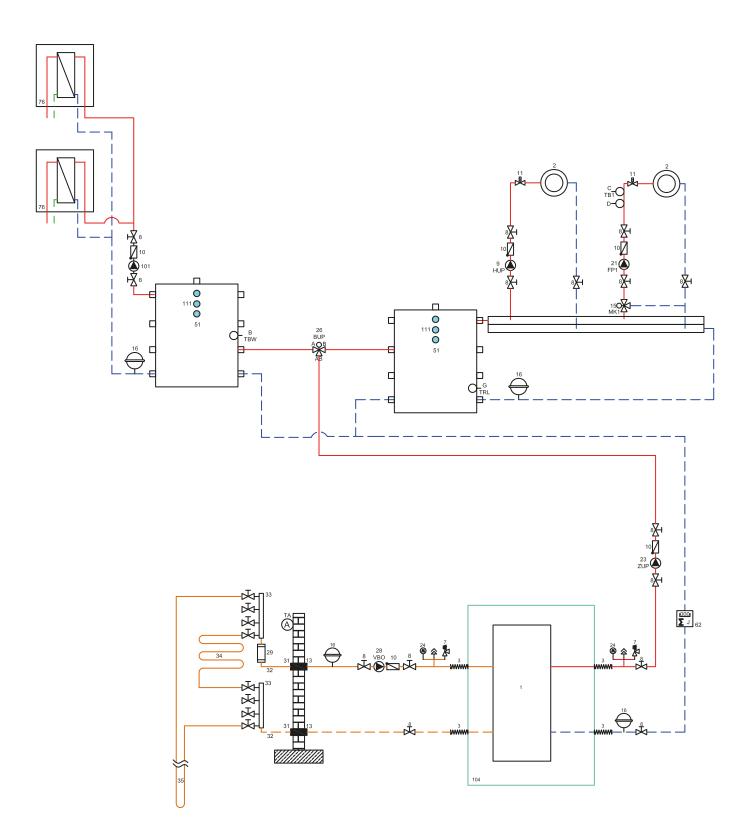
|     | A<br>C | Front view<br>Top view                                                |
|-----|--------|-----------------------------------------------------------------------|
| POS | 1      | <b>Designation</b><br>Hatched area is free space for service purposes |
|     | 2      | Concrete foundation with sound insulation inlay                       |



Installation plan 2/2

SWP 1100 – 1600 / SWP 700H – 1000H A




Legend: UK819135~c All dimensions in mm.

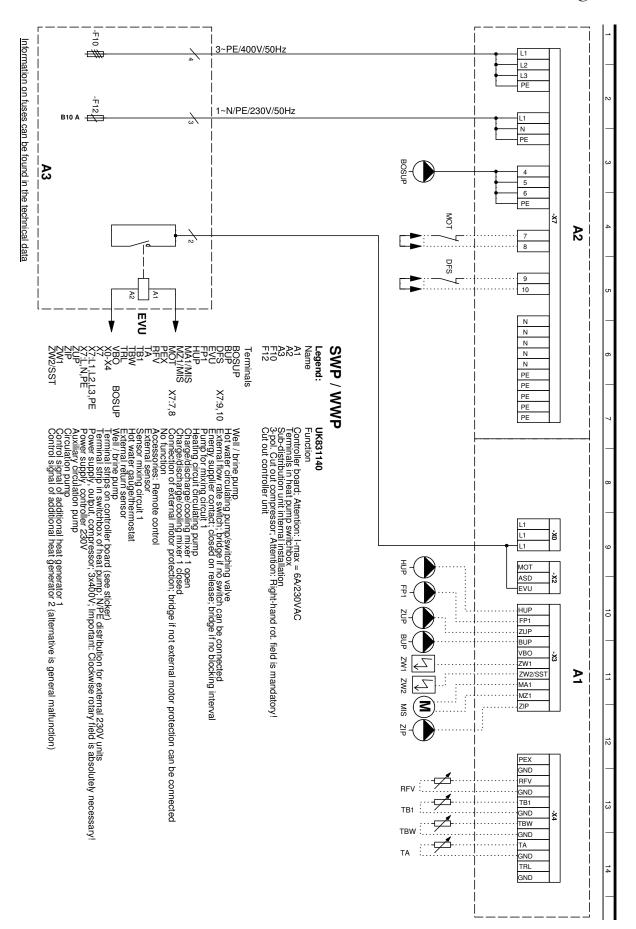
|     | A | Front view                                      |
|-----|---|-------------------------------------------------|
|     | С | Top view                                        |
| POS |   | Designation                                     |
|     | 1 | Hatched area is free space for service purposes |
|     | 2 | Concrete foundation with sound insulation inlay |
|     |   |                                                 |

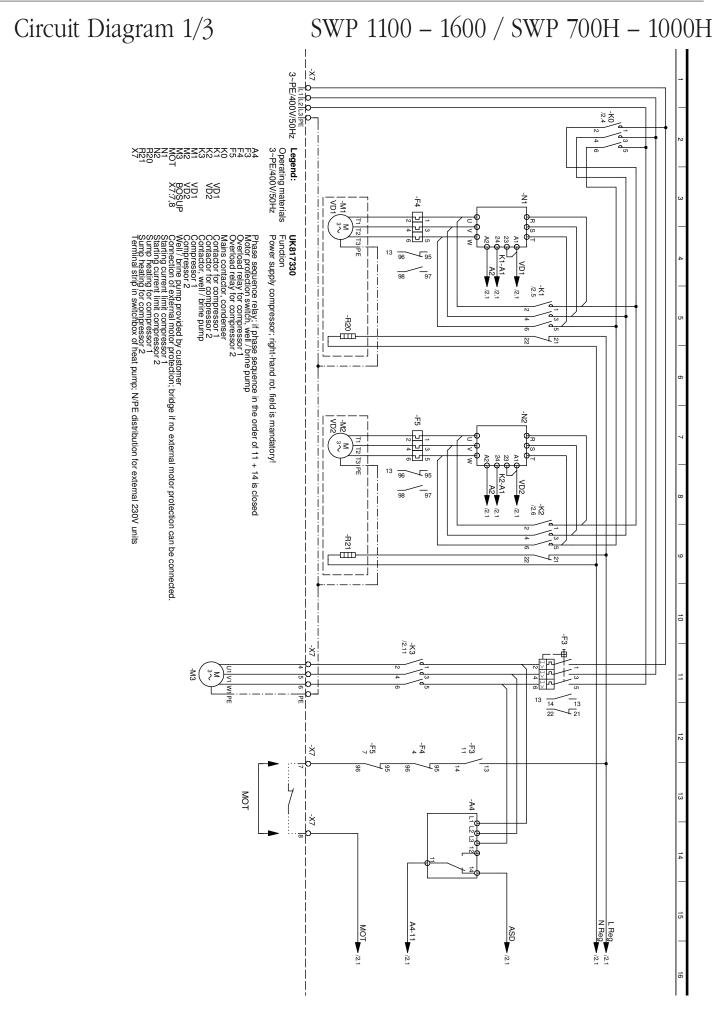


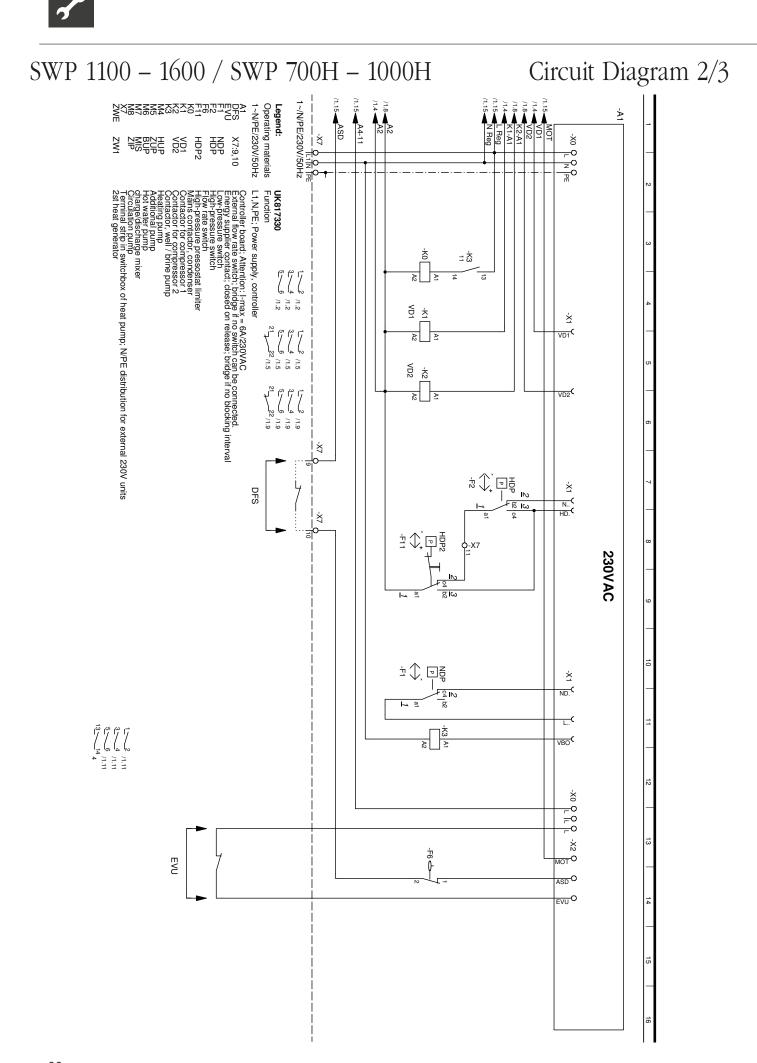
# SWP 1100 – 1600 / SWP 700H – 1000H

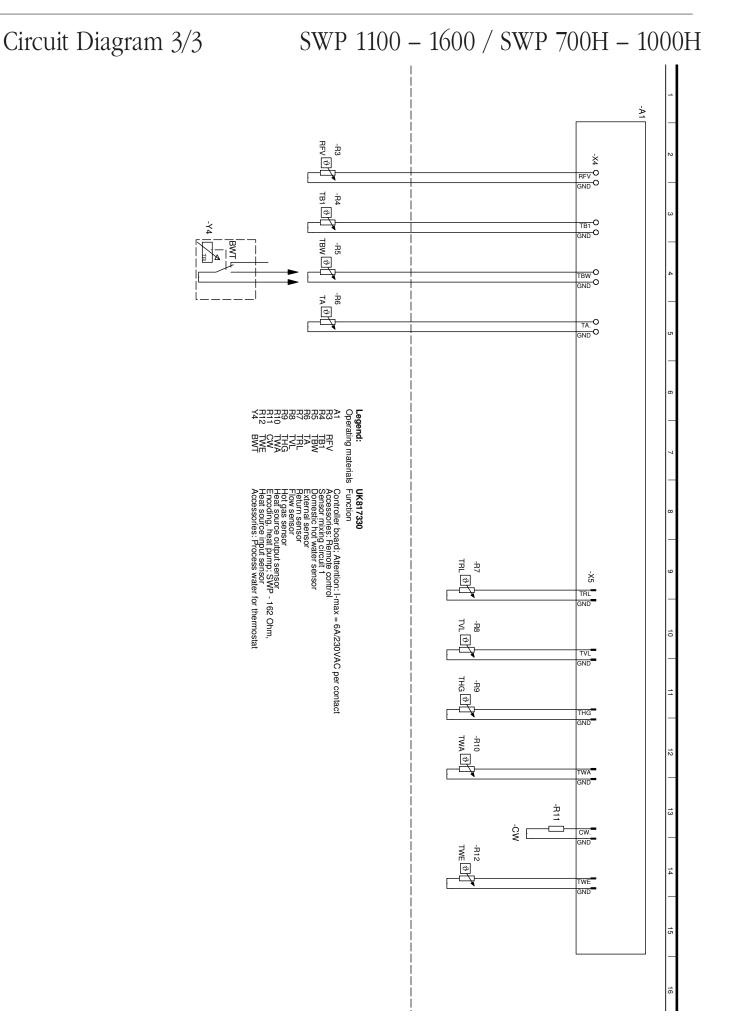
Separate buffer tank




| -         | Heat pump                                                        | 51  | Seperation tank                                            | IAA            | External s |
|-----------|------------------------------------------------------------------|-----|------------------------------------------------------------|----------------|------------|
| 2         | Underfloor heating / radiators                                   | 52  | Gas- or oil-boiler                                         | TBW/B          | Domestic   |
| c         | Vibration isolation                                              | 53  | Wood boiler                                                | TB1/C          | Feedwate   |
| Τ         | Sylomer etrip machine underlav                                   | 54  | Hot water ovlinder                                         |                | Eloor tmn  |
| r ư       |                                                                  | 1 1 | Rrine pressure switch                                      | TRI /G         | Sensor a   |
|           |                                                                  | 3   |                                                            |                |            |
| 1 0       | essel packing                                                    | 8   |                                                            |                |            |
| _         | Sarety valve                                                     | /9  | Geothermal heat exchanger                                  | IRL/H          | Sensor re  |
| ø         | Closure                                                          | 58  | Ventilation system                                         |                |            |
| 0         | Heating circulation pump                                         | 59  | Plate heat exchanger                                       | 79             | Motor valv |
| 10        | Non return valve/ one way valve                                  | 61  | Cooling cylinder                                           | 80             | Mixing va  |
| 11        | Individual room regulation                                       | 65  | Compact distributor                                        | 81             | Split heat |
| 12        | Overflow valve                                                   | 99  | Fancoils                                                   | 82             | Split heat |
| 13        | Steamtight insulation                                            | 67  | Solar/ service water cylinder                              | 83             | Circulatio |
| 14        | Service water circulation pump                                   | 68  | Solar/ service water cylinder                              | 84             | Switching  |
| 15        | Mixer circuit three-way mixer (MK1 discharge)                    | 69  | Multifunction tank                                         | 113            | Connectio  |
| 16        | Expansion vessel supplied by customer                            | 71  | Dual hydraulic module                                      | BT1            | Outdoor to |
| 18        | Heating rod (heating)                                            | 72  | Buffer tank wall mounted                                   | BT2            | Flow temp  |
| 19        | Mixer circuit four-way mixer (MK1 charge)                        | 73  | Pipe lead-in                                               | BT3            | Return tei |
| 20        | Heating rod (SW)                                                 | 74  | Ventower                                                   | BT6            | Domestic   |
| 21        | Mixer circuit circulation pump (FP1)                             | 75  | Scope of delivery, hydraulic tower, dual                   | BT12           | Flow temp  |
| 23        | Feed circulating pump (reconnect the integrated circulating pump |     | •                                                          |                | F          |
|           | in the heat pump)                                                | 76  | Fresh water station                                        | B118           | l emperat  |
| 24        | Manifuld                                                         | 77  | Scope of supply water/water booster                        | BT24           | Temperat   |
| 25        | Heating circulation pump                                         | 78  | Accessories water/water booster optional                   |                | -          |
| 26        | Switching valve (heating/service water)(B = normally open)       |     | -                                                          |                |            |
| 27        | Heating element                                                  |     |                                                            |                |            |
| 28        | Brine circulation pump                                           |     |                                                            | Comfort board: | ard:       |
| 29        | Dirt-trap 0.6 mm mesh                                            |     |                                                            | 15             | Mixer circ |
| 30        | Spill-tray für brine mix                                         | 100 | Room thermostat for cooling (optional)                     | 17             | Temperat   |
| 31        | Wall breakthrough                                                | 101 | Controls supplied by customer                              | 19             | Mixer circ |
| 32        | Inlet pipe                                                       | 102 | Dew-point monitor (optional)                               | 21             | Mixer circ |
| 33        | Brine manifuld                                                   | 103 | Room thermostat for reference space in packing list        | 22             | Swimminę   |
| 34        | Ground collector                                                 | 104 | Supply heat pump                                           | 44             | Three-wa   |
| 35        | Ground slinkies                                                  | 105 | Cooling circuit module box removeable for installation     | 47             | Changeo    |
| 36        | Groundwater spring pump                                          | 106 | Specific glycole mixture                                   | 60             | Changeo    |
| 37        | Wall bracket                                                     | 107 | Scald protection / thermostatic mixer valve                | 62             | Heat mete  |
| 38        | Flow switch                                                      | 108 | Solar pump assembly                                        | 63             | Changeo    |
| 39        | Suction well                                                     | 109 | Overflow valve must be closed                              | 64             | Cooling ci |
| 40        | Inverted well                                                    | 110 | Packing list hydraulic tower                               | 70             | Solar sep  |
| 4         | Rinse fitting heating circuit                                    | 111 | Mounting for additional heating element                    | TB2-3/C        | Feedwate   |
| 42        | Circulation pump                                                 | 112 | Minimum distance to thermal decoupling of the mixing valve | TSS/E          | Sensor, te |
| 43        | Brine / Water heat exchanger (cooling function)                  |     |                                                            | TSK/E          | Sensor, te |
| 44<br>4 r | Three-way mixer valve (cooling function MK1)                     |     |                                                            | TEE/F          | Sensor ey  |
| 40        | Cap valve                                                        |     |                                                            |                |            |
| 46        | Filler and drainage valve                                        |     |                                                            |                |            |
| 4<br>8 0  |                                                                  |     |                                                            |                |            |
| 49        | Direction of groundwater flow                                    |     |                                                            |                |            |
| nc        | Butter storage                                                   |     |                                                            |                |            |


over valve swimming bath preparation(B = normally open) temperature difference control (low temperature) temperature difference control (high temperature) over valve cooling operation(B = normally open) over valve solar circuit(B = normally open) rcuit three-way mixer (MK2-3 discharge) ircuit circulation pump (FP2-3) ing pool circulating pump way mixer valve (cooling function MK2) rcuit four-way mixer (MK2 charge) ature sensor 2nd heat generator ic hot water temperature sensor return (hydraulic module, dual) ature sensor immersion heater ter sensor mixer circuits 2-3 ter sensor mixer circuits 1 ature difference regulator ng valve tion 2nd heat generator external energy source ssure regulator valve eat pump outdoor unit eat pump indoor unit temperature sensor temperature sensor ic hot water sensor nperature liquefier nperature sensor circulation pump speration module perature limiter external return eter (optional) ion pump l sensor valve alve





# SWP 1100 – 1600 / SWP 700H – 1000H

Terminal Diagram









## **EC Declaration of Conformity** in accordance with the EC Machinery Directive 2006/42/EC, Annex II A

CE

The undersigned

confirms that the following designated device(s) as designed and marketed by us fulfill the standardized EC directives, the EC safety standards and the product-specific EC standards. In the event of modification of the device(s) without our approval, this declaration shall become invalid.

Designation of the device(s)

## **Heat Pump**



| Unit model | Number  | Unit model  | Number  |
|------------|---------|-------------|---------|
| SWP 430 *  | 100 488 | SWP 270H *  | 100 489 |
| SWP 540 *  | 100 361 | SWP 330H *  | 100 365 |
| SWP 670 *  | 100 362 | SWP 410H *  | 100 366 |
| SWP 820 *  | 100 363 | SWP 500H *  | 100 367 |
| SWP 1100 * | 100 372 | SWP 700H *  | 100 375 |
| SWP 1250 * | 100 373 | SWP 850H *  | 100 376 |
| SWP 1600 * | 100 374 | SWP 1000H * | 100 377 |
| WWP 550X * | 100 490 | WWP 900X *  | 100 370 |
| WWP 700X * | 100 369 | WWP 1100X * | 100 371 |

| EC Directives Standardized EN   2006/42/EG 2009/125/EG EN 378 EN 349   2006/95/EG 2010/30/EU EN 60529 EN 60335-   2004/108/EG EN ISO 12100-1/2 EN 55014-   *97/23/EG EN ISO 13857 EN 61000- | -1/-2        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| * Pressure equipment component                                                                                                                                                              |              |
| Category II                                                                                                                                                                                 |              |
| Module A1                                                                                                                                                                                   |              |
| Designated position:                                                                                                                                                                        |              |
| TÜV-SÜD                                                                                                                                                                                     |              |
| Industrie Service GmbH (Nr.:0036)                                                                                                                                                           |              |
|                                                                                                                                                                                             |              |
| Company: Place, date: Kasendorf.                                                                                                                                                            | , 17.12.2015 |
| ait-deutschland GmbH                                                                                                                                                                        | •            |
| Industrie Str. 3                                                                                                                                                                            |              |
| 93359 Kasendorf                                                                                                                                                                             |              |

Signature:

Jesper Stannow Head of Heating Development

UK818125d

Germany

| Model                                        | SWP 1100 |
|----------------------------------------------|----------|
| Air-to-water heat pump: (yes/no)             | no       |
| Brine-to-water heat pump: (yes/no)           | yes      |
| Water-to-water heat pump: (yes/no)           | no       |
| Low-temperature heat pump: (yes/no)          | no       |
| Equipped with supplementary heater: (yes/no) | no       |
| combination heater with: (yes/no)            | no       |
| application: (low/medium)                    | low      |
| climate: (colder/average/warmer)             | average  |

| tem                                                            | Symbol      | Value     | Unit       | Item                                                             | Symbol | Value      | Uni  |
|----------------------------------------------------------------|-------------|-----------|------------|------------------------------------------------------------------|--------|------------|------|
| Rated heat output                                              | Prated      | 108       | kW         | Seasonal space heating energy efficiency                         | ηS     | 155,0      | %    |
| Declared coefficient of perform indoor temperature 20°C and or |             |           |            | Declared coefficient of performatindoor temperature 20°C and ou  |        |            |      |
| Tj = -7°C                                                      | Pdh         | 107,5     | kW         | Tj = -7°C                                                        | COPd   | 4,31       | -    |
| Tj = +2°C                                                      | Pdh         | 107,5     | kW         | Tj = +2°C                                                        | COPd   | 4,57       | -    |
| Tj = +7°C                                                      | Pdh         | 107,5     | kW         | Tj = +7°C                                                        | COPd   | 4,84       | -    |
| Tj = +12°C                                                     | Pdh         | 107,5     | kW         | Tj = +12°C                                                       | COPd   | 5,14       | -    |
| Tj = bivalent temperature                                      | Pdh         | 107,5     | kW         | Tj = bivalent temperature                                        | COPd   | 4,26       | -    |
| Tj = operation limit temperature                               | Pdh         | 107,5     | kW         | Tj = operation limit temperature                                 | COPd   | 4,26       | -    |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)    | Pdh         | 107,5     | kW         | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)      | COPd   | 4,26       | -    |
|                                                                | Tbiv        | -10       | °C         | For air-to-water heat pumps:<br>Operation limit temperature      | TOL    | -10        | °C   |
| Cycling interval capacity for<br>heating                       | Pcych       |           | kW         | Cycling interval efficiency                                      | COPcyc |            | -    |
| Degradation co-efficient (**)                                  | Cdh         | 1,0       | -          | Heating water operating limit temperature                        | WTOL   | 55         | °C   |
| Power consumption in modes of                                  | other than  | active m  | ode        | Supplementary heater                                             |        |            |      |
| Off mode                                                       | POFF        | 0,010     | kW         | Rated heat output                                                | Psup   | 0,0        | kW   |
| Thermostat-off mode                                            | РТО         | 0,010     | kW         | Type of energy input                                             | e      | electrical |      |
| Standby mode                                                   | PSB         | 0,010     | kW         |                                                                  |        |            |      |
| Crankcase heater mode                                          | PCK         | 0         | kW         |                                                                  |        |            |      |
| Other items                                                    |             |           |            |                                                                  |        |            |      |
| Capacity control                                               |             | fixed     |            | For air-to-water heat pumps:<br>Rated air flow rate, outdoors    | -      | -          | m³/h |
| sound power level,<br>indoors/outdoors                         | LWA         | 77/-      | dB         | For water-/brine-to-water heat                                   |        | 20000      | m³/h |
| Emissions of nitrogen oxides                                   | NOX         | 0         | mg/<br>kWh | pumps: Rated brine or water flow<br>rate, outdoor heat exchanger | -      |            |      |
| For heat pump combination hea                                  | ater:       | <u> </u>  |            |                                                                  | 1      | 4          |      |
| Declared load profile                                          |             | -         |            | Water heating energy efficiency                                  | ηwh    | -          | %    |
| Daily electricity consumption                                  | Qelec       | -         | kWh        | Daily fuel consumption                                           | Qfuel  | C          | kW   |
| Contact details                                                | ait deutscl | nland Gmb | H Industri | jestr. 3 95359 Kasendorf Germany <sup>®</sup>                    |        |            |      |

| Model                                        | SWP 1100 |
|----------------------------------------------|----------|
| Air-to-water heat pump: (yes/no)             | no       |
| Brine-to-water heat pump: (yes/no)           | yes      |
| Water-to-water heat pump: (yes/no)           | no       |
| Low-temperature heat pump: (yes/no)          | no       |
| Equipped with supplementary heater: (yes/no) | no       |
| combination heater with: (yes/no)            | no       |
| application: (low/medium)                    | medium   |
| climate: (colder/average/warmer)             | average  |

| Item                                                              | Symbol      | Value     | Unit       | Item                                                                                               | Symbol     | Value     | Unit       |
|-------------------------------------------------------------------|-------------|-----------|------------|----------------------------------------------------------------------------------------------------|------------|-----------|------------|
| Rated heat output                                                 | Prated      | 108       | kW         | Seasonal space heating energy<br>efficiency                                                        | ηS         | 112,0     | %          |
| Declared coefficient of perform<br>indoor temperature 20°C and or | utdoor ten  | nperature | Тј         | Declared coefficient of performatindoor temperature 20°C and ou                                    | utdoor tem | perature  |            |
| Tj = -7°C                                                         | Pdh         | 107,6     |            | Tj = -7°C                                                                                          | COPd       | 2,94      | -          |
| $Tj = +2^{\circ}C$                                                | Pdh         | 107,6     |            | Tj = +2°C                                                                                          | COPd       | 3,36      | -          |
| $Tj = +7^{\circ}C$                                                | Pdh         | 107,5     | kW         | Tj = +7°C                                                                                          | COPd       | 3,68      | -          |
| Tj = +12°C                                                        | Pdh         | 107,5     | kW         | Tj = +12°C                                                                                         | COPd       | 4,08      | -          |
| Tj = bivalent temperature                                         | Pdh         | 107,6     | kW         | Tj = bivalent temperature                                                                          | COPd       | 2,84      | -          |
| Tj = operation limit temperature                                  | Pdh         | 107,6     | kW         | Tj = operation limit temperature                                                                   | COPd       | 2,84      | -          |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)       | Pdh         | 107,6     | kW         | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)                                        | COPd       | 2,84      | -          |
| Bivalent temperature                                              | Tbiv        | -10       | °C         | For air-to-water heat pumps:<br>Operation limit temperature                                        | TOL        | -10       | °C         |
| Cycling interval capacity for<br>heating                          | Pcych       |           | kW         | Cycling interval efficiency                                                                        | COPcyc     |           | -          |
| Degradation co-efficient (**)                                     | Cdh         | 1,0       | -          | Heating water operating limit temperature                                                          | WTOL       | 55        | °C         |
| Power consumption in modes of                                     | other than  | active m  | ode        | Supplementary heater                                                                               |            |           |            |
| Off mode                                                          | POFF        | 0,010     | kW         | Rated heat output                                                                                  | Psup       | 0,0       | kW         |
| Thermostat-off mode                                               | PTO         | 0,010     | kW         | Type of energy input                                                                               | e          | lectrical |            |
| Standby mode                                                      | PSB         | 0,010     | kW         |                                                                                                    |            |           |            |
| Crankcase heater mode                                             | PCK         | 0         | kW         |                                                                                                    |            |           |            |
| Capacity control                                                  |             | fixed     |            | For air-to-water heat pumps:<br>Rated air flow rate, outdoors                                      |            | -         | m³/h       |
| sound power level,                                                | LWA         | 77/-      | dB         | -                                                                                                  |            |           |            |
| indoors/outdoors<br>Emissions of nitrogen oxides                  | NOX         | 0         | mg/        | For water-/brine-to-water heat<br>pumps: Rated brine or water flow<br>rate, outdoor heat exchanger | -          | 20000     | m³/h       |
| _                                                                 |             |           | kŴh        |                                                                                                    |            |           |            |
| For heat pump combination hea                                     | ater:       |           |            |                                                                                                    | · · ·      |           | <i>c</i> ( |
| Declared load profile                                             |             | -         |            | Water heating energy efficiency                                                                    | ηwh        | -         | %          |
| Daily electricity consumption                                     | Qelec       | -         | kWh        | Daily fuel consumption                                                                             | Qfuel      | 0         | kWh        |
| Contact details                                                   | ait deutsch | nland Gmb | H Industri | iestr. 3 95359 Kasendorf Germany <sup>®</sup>                                                      |            |           | 1          |
|                                                                   |             |           |            | eaters, the rated heat output Prated<br>tary heater Psup is equal to the sup                       |            |           |            |

| Model                                        | SWP 1250 |
|----------------------------------------------|----------|
| Air-to-water heat pump: (yes/no)             | no       |
| Brine-to-water heat pump: (yes/no)           | yes      |
| Water-to-water heat pump: (yes/no)           | no       |
| Low-temperature heat pump: (yes/no)          | no       |
| Equipped with supplementary heater: (yes/no) | no       |
| combination heater with: (yes/no)            | no       |
| application: (low/medium)                    | low      |
| climate: (colder/average/warmer)             | average  |

| tem                                                            | Symbol      | Value     | Unit       | Item                                                                 | Symbol | Value                                 | Uni  |
|----------------------------------------------------------------|-------------|-----------|------------|----------------------------------------------------------------------|--------|---------------------------------------|------|
| Rated heat output                                              | Prated      | 125       | kW         | Seasonal space heating energy efficiency                             | ηS     | 155,0                                 | %    |
| Declared coefficient of perform indoor temperature 20°C and or |             |           |            | Declared coefficient of performation indoor temperature 20°C and out |        |                                       |      |
| Tj = -7°C                                                      | Pdh         | 125,1     | kW         | Tj = -7°C                                                            | COPd   | 4,33                                  | -    |
| Tj = +2°C                                                      | Pdh         | 125,1     | kW         | Tj = +2°C                                                            | COPd   | 4,58                                  | -    |
| Tj = +7°C                                                      | Pdh         | 125,1     | kW         | Tj = +7°C                                                            | COPd   | 4,84                                  | -    |
| Tj = +12°C                                                     | Pdh         | 125,1     | kW         | Tj = +12°C                                                           | COPd   | 5,12                                  | -    |
| Tj = bivalent temperature                                      | Pdh         | 125,1     | kW         | Tj = bivalent temperature                                            | COPd   | 4,28                                  | -    |
| Tj = operation limit temperature                               | Pdh         | 125,1     | kW         | Tj = operation limit temperature                                     | COPd   | 4,28                                  | -    |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)    | Pdh         | 125,1     | kW         | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)          | COPd   | 4,28                                  | -    |
|                                                                | Tbiv        | -10       | °C         | For air-to-water heat pumps:<br>Operation limit temperature          | TOL    | -10                                   | °C   |
| Cycling interval capacity for<br>heating                       | Pcych       |           | kW         | Cycling interval efficiency                                          | COPcyc |                                       | -    |
| Degradation co-efficient (**)                                  | Cdh         | 1,0       | -          | Heating water operating limit temperature                            | WTOL   | 55                                    | °C   |
| Power consumption in modes of                                  | other than  | active m  | ode        | Supplementary heater                                                 |        |                                       |      |
| Off mode                                                       | POFF        | 0,010     | kW         | Rated heat output                                                    | Psup   | 0,0                                   | kW   |
| Thermostat-off mode                                            | РТО         | 0,010     | kW         | Type of energy input                                                 | e      | electrical                            |      |
| Standby mode                                                   | PSB         | 0,010     | kW         |                                                                      |        |                                       |      |
| Crankcase heater mode                                          | PCK         | 0         | kW         |                                                                      |        |                                       |      |
| Other items                                                    |             |           |            |                                                                      |        |                                       |      |
| Capacity control                                               |             | fixed     |            | For air-to-water heat pumps:<br>Rated air flow rate, outdoors        | -      | -                                     | m³/h |
| sound power level,<br>indoors/outdoors                         | LWA         | 79/-      | dB         | For water-/brine-to-water heat                                       |        | 22300                                 | m³/h |
| Emissions of nitrogen oxides                                   | NOX         | 0         | mg/<br>kWh | pumps: Rated brine or water flow rate, outdoor heat exchanger        | -      |                                       |      |
| For heat pump combination hea                                  | ater:       |           |            | · <u>·</u>                                                           | *      | عــــــــــــــــــــــــــــــــــــ |      |
| Declared load profile                                          |             | -         |            | Water heating energy efficiency                                      | ηwh    | -                                     | %    |
| Daily electricity consumption                                  | Qelec       | -         | kWh        | Daily fuel consumption                                               | Qfuel  | C                                     | kWł  |
| Contact details                                                | ait deutscl | nland Gmb | H Industri | iestr. 3 95359 Kasendorf Germany                                     |        |                                       |      |

| Model                                        | SWP 1250 |
|----------------------------------------------|----------|
| Air-to-water heat pump: (yes/no)             | no       |
| Brine-to-water heat pump: (yes/no)           | yes      |
| Water-to-water heat pump: (yes/no)           | no       |
| Low-temperature heat pump: (yes/no)          | no       |
| Equipped with supplementary heater: (yes/no) | no       |
| combination heater with: (yes/no)            | no       |
| application: (low/medium)                    | medium   |
| climate: (colder/average/warmer)             | average  |

| Item                                                              | Symbol      | Value     | Unit       | Item                                                                         | Symbol     | Value      | Unit |
|-------------------------------------------------------------------|-------------|-----------|------------|------------------------------------------------------------------------------|------------|------------|------|
| Rated heat output                                                 | Prated      | 125       | kW         | Seasonal space heating energy efficiency                                     | ηS         | 114,0      | %    |
| Declared coefficient of perform<br>indoor temperature 20°C and or | utdoor ten  | nperature | Тј         | Declared coefficient of performa<br>indoor temperature 20°C and ou           | utdoor tem | perature   |      |
| Tj = -7°C                                                         | Pdh         | 125,2     |            | Tj = -7°C                                                                    | COPd       | 2,98       | -    |
| $Tj = +2^{\circ}C$                                                | Pdh         | 125,2     | kW         | Tj = +2°C                                                                    | COPd       | 3,40       | -    |
| Tj = +7°C                                                         | Pdh         | 125,1     | kW         | Tj = +7°C                                                                    | COPd       | 3,72       | -    |
| Tj = +12°C                                                        | Pdh         | 125,1     | kW         | Tj = +12°C                                                                   | COPd       | 4,11       | -    |
| Tj = bivalent temperature                                         | Pdh         | 125,2     | kW         | Tj = bivalent temperature                                                    | COPd       | 2,88       | -    |
| Tj = operation limit temperature                                  | Pdh         | 125,2     | kW         | Tj = operation limit temperature                                             | COPd       | 2,88       | -    |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)       | Pdh         | 125,2     | kW         | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)                  | COPd       | 2,88       | -    |
| Bivalent temperature                                              | Tbiv        | -10       | °C         | For air-to-water heat pumps:<br>Operation limit temperature                  | TOL        | -10        | °C   |
| Cycling interval capacity for<br>heating                          | Pcych       |           | kW         | Cycling interval efficiency                                                  | COPcyc     |            | -    |
| Degradation co-efficient (**)                                     | Cdh         | 1,0       | -          | Heating water operating limit temperature                                    | WTOL       | 55         | °C   |
| Power consumption in modes of                                     | other than  | active m  | ode        | Supplementary heater                                                         |            |            |      |
| Off mode                                                          | POFF        | 0,010     | kW         | Rated heat output                                                            | Psup       | 0,0        | kW   |
| Thermostat-off mode                                               | PTO         | 0,010     | kW         | Type of energy input                                                         | e          | electrical |      |
| Standby mode                                                      | PSB         | 0,010     | kW         |                                                                              |            |            |      |
| Crankcase heater mode                                             | PCK         | 0         | kW         |                                                                              |            |            |      |
| Capacity control                                                  |             | fixed     |            | For air-to-water heat pumps:<br>Rated air flow rate, outdoors                | -          | -          | m³/h |
| sound power level,<br>indoors/outdoors                            | LWA         | 79/-      | dB         | For water-/brine-to-water heat                                               |            | 22300      | m³/h |
| Emissions of nitrogen oxides                                      | NOX         | 0         | mg/<br>kWh | pumps: Rated brine or water flow rate, outdoor heat exchanger                | -          |            |      |
| For heat pump combination hea                                     | ater:       | 4         |            |                                                                              |            | 4 F        |      |
| Declared load profile                                             |             | -         |            | Water heating energy efficiency                                              | ηwh        | -          | %    |
| Daily electricity consumption                                     | Qelec       | -         | kWh        | Daily fuel consumption                                                       | Qfuel      | 0          | kWh  |
| Contact details                                                   | ait deutsch | nland Gmb | H Industri | estr. 3 95359 Kasendorf Germany                                              |            | 1          | L    |
|                                                                   |             |           |            | eaters, the rated heat output Prated<br>tary heater Psup is equal to the sup |            |            |      |

| Model                                        | SWP 1600 |
|----------------------------------------------|----------|
| Air-to-water heat pump: (yes/no)             | no       |
| Brine-to-water heat pump: (yes/no)           | yes      |
| Water-to-water heat pump: (yes/no)           | no       |
| Low-temperature heat pump: (yes/no)          | no       |
| Equipped with supplementary heater: (yes/no) | no       |
| combination heater with: (yes/no)            | no       |
| application: (low/medium)                    | low      |
| climate: (colder/average/warmer)             | average  |

| ltem                                                           | Symbol      | Value     | Unit            | Item                                                            | Symbol | Value      | Uni  |
|----------------------------------------------------------------|-------------|-----------|-----------------|-----------------------------------------------------------------|--------|------------|------|
| Rated heat output                                              | Prated      | 162       | kW              | Seasonal space heating energy efficiency                        | ηS     | 158,0      | %    |
| Declared coefficient of perform indoor temperature 20°C and or |             |           |                 | Declared coefficient of performa indoor temperature 20°C and ou |        |            |      |
| Tj = -7°C                                                      | Pdh         | 161,6     | kW              | Tj = -7°C                                                       | COPd   | 4,39       | -    |
| Tj = +2°C                                                      | Pdh         | 161,6     | kW              | Tj = +2°C                                                       | COPd   | 4,65       | -    |
| Tj = +7°C                                                      | Pdh         | 161,5     | kW              | Tj = +7°C                                                       | COPd   | 4,90       | -    |
| Tj = +12°C                                                     | Pdh         | 161,5     | kW              | Tj = +12°C                                                      | COPd   | 5,18       | -    |
| Tj = bivalent temperature                                      | Pdh         | 161,6     | kW              | Tj = bivalent temperature                                       | COPd   | 4,35       | -    |
| Tj = operation limit temperature                               | Pdh         | 161,6     | kW              | Tj = operation limit temperature                                | COPd   | 4,35       | -    |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)    | Pdh         | 161,6     | kW              | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)     | COPd   | 4,35       | -    |
|                                                                | Tbiv        | -10       | °C              | For air-to-water heat pumps:<br>Operation limit temperature     | TOL    | -10        | °C   |
| Cycling interval capacity for<br>heating                       | Pcych       |           | kW              | Cycling interval efficiency                                     | COPcyc |            | -    |
| Degradation co-efficient (**)                                  | Cdh         | 1,0       | -               | Heating water operating limit temperature                       | WTOL   | 55         | °C   |
| Power consumption in modes of                                  | other than  | active m  | ode             | Supplementary heater                                            |        |            |      |
| Off mode                                                       | POFF        | 0,010     | kW              | Rated heat output                                               | Psup   | 0,0        | kW   |
| Thermostat-off mode                                            | РТО         | 0,010     | kW              | Type of energy input                                            | e      | electrical |      |
| Standby mode                                                   | PSB         | 0,010     | kW              |                                                                 |        |            |      |
| Crankcase heater mode                                          | PCK         | 0         | kW              |                                                                 |        |            |      |
| Other items                                                    |             |           |                 |                                                                 |        |            |      |
| Capacity control                                               |             | fixed     |                 | For air-to-water heat pumps:<br>Rated air flow rate, outdoors   | _      | -          | m³/h |
| sound power level,<br>indoors/outdoors                         | LWA         | 81/-      | dB              | For water-/brine-to-water heat                                  |        | 29100      | m³/h |
| Emissions of nitrogen oxides                                   | NOX         | 0         | mg/<br>kWh      | pumps: Rated brine or water flow rate, outdoor heat exchanger   | -      |            |      |
| For heat pump combination hea                                  | ater:       | <u> </u>  |                 |                                                                 |        | · +        |      |
| Declared load profile                                          |             | -         |                 | Water heating energy efficiency                                 | ηwh    | -          | %    |
| Daily electricity consumption                                  | Qelec       | -         | kWh             | Daily fuel consumption                                          | Qfuel  | C          | kW   |
| Contact details                                                | ait deutsch | nland Gmb | l<br>H Industri | jestr. 3 95359 Kasendorf Germany                                |        |            |      |

| Model                                        | SWP 1600 |
|----------------------------------------------|----------|
| Air-to-water heat pump: (yes/no)             | no       |
| Brine-to-water heat pump: (yes/no)           | yes      |
| Water-to-water heat pump: (yes/no)           | no       |
| Low-temperature heat pump: (yes/no)          | no       |
| Equipped with supplementary heater: (yes/no) | no       |
| combination heater with: (yes/no)            | no       |
| application: (low/medium)                    | medium   |
| climate: (colder/average/warmer)             | average  |

| tem                                                              | Symbol     | Value     | Unit       | ltem                                                               | Symbol     | Value      | Uni  |
|------------------------------------------------------------------|------------|-----------|------------|--------------------------------------------------------------------|------------|------------|------|
| Rated heat output                                                | Prated     | 162       | kW         | Seasonal space heating energy efficiency                           | ηS         | 116,0      | %    |
| Declared coefficient of perform<br>indoor temperature 20°C and o | utdoor ten | nperature | Тј         | Declared coefficient of performa<br>indoor temperature 20°C and ou | itdoor tem | nperature  |      |
| Tj = -7°C                                                        | Pdh        | 161,8     | kW         | Tj = -7°C                                                          | COPd       | 3,05       | -    |
| Tj = +2°C                                                        | Pdh        | 161,7     | kW         | Tj = +2°C                                                          | COPd       | 3,47       | -    |
| Tj = +7°C                                                        | Pdh        | 161,7     | kW         | Tj = +7°C                                                          | COPd       | 3,79       | -    |
| Tj = +12°C                                                       | Pdh        | 161,6     | kW         | Tj = +12°C                                                         | COPd       | 4,18       | -    |
| Tj = bivalent temperature                                        | Pdh        | 161,9     | kW         | Tj = bivalent temperature                                          | COPd       | 2,95       | -    |
| Tj = operation limit temperature                                 | Pdh        | 161,9     | kW         | Tj = operation limit temperature                                   | COPd       | 2,95       | -    |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)      | Pdh        | 161,9     | kW         | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)        | COPd       | 2,95       | -    |
| Bivalent temperature                                             | Tbiv       | -10       | °C         | For air-to-water heat pumps:<br>Operation limit temperature        | TOL        | -10        | °C   |
| Cycling interval capacity for<br>heating                         | Pcych      |           | kW         | Cycling interval efficiency                                        | COPcyc     |            | -    |
| Degradation co-efficient (**)                                    | Cdh        | 1,0       | -          | Heating water operating limit temperature                          | WTOL       | 55         | °C   |
| Power consumption in modes of                                    | other than | active m  | ode        | Supplementary heater                                               |            |            |      |
| Off mode                                                         | POFF       | 0,010     | kW         | Rated heat output                                                  | Psup       | 0,0        | kW   |
| Thermostat-off mode                                              | PTO        | 0,010     | kW         | Type of energy input                                               | e          | electrical |      |
| Standby mode                                                     | PSB        | 0,010     | kW         |                                                                    |            |            |      |
| Crankcase heater mode                                            | PCK        | 0         | kW         |                                                                    |            |            |      |
| Capacity control                                                 |            | fixed     |            | For air-to-water heat pumps:<br>Rated air flow rate, outdoors      | _          | -          | m³/h |
| sound power level,<br>indoors/outdoors                           | LWA        | 81/-      | dB         | For water-/brine-to-water heat                                     |            | 29100      | m³/h |
| Emissions of nitrogen oxides                                     | NOX        | 0         | mg/<br>kWh | pumps: Rated brine or water flow<br>rate, outdoor heat exchanger   | -          | 23100      | ,    |
| For heat pump combination he                                     | ater:      |           |            | . <u>.                                   </u>                      | -          | <u> </u>   |      |
| Declared load profile                                            |            | -         |            | Water heating energy efficiency                                    | ηwh        | -          | %    |
|                                                                  | Qelec      | -         | kWh        | Daily fuel consumption                                             | Qfuel      | 0          | kWl  |
| Daily electricity consumption                                    |            |           |            |                                                                    |            |            |      |

| Model                                        | SWP 850H |
|----------------------------------------------|----------|
| Air-to-water heat pump: (yes/no)             | no       |
| Brine-to-water heat pump: (yes/no)           | yes      |
| Water-to-water heat pump: (yes/no)           | no       |
| Low-temperature heat pump: (yes/no)          | no       |
| Equipped with supplementary heater: (yes/no) | no       |
| combination heater with: (yes/no)            | no       |
| application: (low/medium)                    | low      |
| climate: (colder/average/warmer)             | average  |

| Item                                                              | Symbol      | Value     | Unit       | Item                                                            | Symbol | Value     | Uni  |
|-------------------------------------------------------------------|-------------|-----------|------------|-----------------------------------------------------------------|--------|-----------|------|
| Rated heat output                                                 | Prated      | 88        | kW         | Seasonal space heating energy efficiency                        | ηS     | 154,0     | %    |
| Declared coefficient of perform<br>indoor temperature 20°C and ou |             |           |            | Declared coefficient of performatindoor temperature 20°C and ou |        |           |      |
| Tj = -7°C                                                         | Pdh         | 88,0      | kW         | Tj = -7°C                                                       | COPd   | 4,32      | -    |
| Tj = +2°C                                                         | Pdh         | 88,3      | kW         | Tj = +2°C                                                       | COPd   | 4,56      | -    |
| Tj = +7°C                                                         | Pdh         | 88,5      | kW         | Tj = +7°C                                                       | COPd   | 4,79      | -    |
| Tj = +12°C                                                        | Pdh         | 88,7      | kW         | Tj = +12°C                                                      | COPd   | 5,05      | -    |
| Tj = bivalent temperature                                         | Pdh         | 88,0      | kW         | Tj = bivalent temperature                                       | COPd   | 4,28      | -    |
| Tj = operation limit temperature                                  | Pdh         | 88,0      | kW         | Tj = operation limit temperature                                | COPd   | 4,28      | -    |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)       | Pdh         | 88,0      | kW         | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)     | COPd   | 4,28      | -    |
|                                                                   | Tbiv        | -10       | °C         | For air-to-water heat pumps:<br>Operation limit temperature     | TOL    | -10       | °C   |
| Cycling interval capacity for<br>heating                          | Pcych       |           | kW         | Cycling interval efficiency                                     | COPcyc |           | -    |
| Degradation co-efficient (**)                                     | Cdh         | 1,0       | -          | Heating water operating limit temperature                       | WTOL   | 65        | °C   |
| Power consumption in modes of                                     | other than  | active m  | ode        | Supplementary heater                                            |        |           |      |
| Off mode                                                          | POFF        | 0,010     | kW         | Rated heat output                                               | Psup   | 0,0       | kW   |
| Thermostat-off mode                                               | PTO         | 0,010     | kW         | Type of energy input                                            | e      | lectrical |      |
| Standby mode                                                      | PSB         | 0,010     | kW         |                                                                 |        |           |      |
| Crankcase heater mode                                             | PCK         | 0         | kW         |                                                                 |        |           |      |
| Other items                                                       |             |           |            |                                                                 |        |           |      |
| Capacity control                                                  |             | fixed     |            | For air-to-water heat pumps:<br>Rated air flow rate, outdoors   | -      | -         | m³/h |
| sound power level,<br>indoors/outdoors                            | LWA         | 79/-      | dB         | For water-/brine-to-water heat                                  |        | 14800     | m³/h |
| Emissions of nitrogen oxides                                      | NOX         | 0         | mg/<br>kWh | pumps: Rated brine or water flow rate, outdoor heat exchanger   | -      |           |      |
| For heat pump combination hea                                     | ater:       | 4         |            |                                                                 | ·      |           |      |
| Declared load profile                                             |             | -         |            | Water heating energy efficiency                                 | ηwh    | -         | %    |
| Daily electricity consumption                                     | Qelec       | -         | kWh        | Daily fuel consumption                                          | Qfuel  | 0         | kWł  |
| Contact details                                                   | ait deutsch | nland Gmb | H Industri | estr. 3 95359 Kasendorf Germany                                 |        |           |      |

| Model                                        | SWP 850H |
|----------------------------------------------|----------|
| Air-to-water heat pump: (yes/no)             | no       |
| Brine-to-water heat pump: (yes/no)           | yes      |
| Water-to-water heat pump: (yes/no)           | no       |
| Low-temperature heat pump: (yes/no)          | no       |
| Equipped with supplementary heater: (yes/no) | no       |
| combination heater with: (yes/no)            | no       |
| application: (low/medium)                    | medium   |
| climate: (colder/average/warmer)             | average  |

| Item                                                           | Symbol      | Value     | Unit       | Item                                                                           | Symbol | Value      | Unit     |
|----------------------------------------------------------------|-------------|-----------|------------|--------------------------------------------------------------------------------|--------|------------|----------|
| Rated heat output                                              | Prated      | 86        | kW         | Seasonal space heating energy efficiency                                       | ηS     | 114,0      | %        |
| Declared coefficient of perform indoor temperature 20°C and or |             |           |            | Declared coefficient of performating indoor temperature 20°C and out           |        |            |          |
| Tj = -7°C                                                      | Pdh         | 86,1      | kW         | Tj = -7°C                                                                      | COPd   | 3,01       | -        |
| Tj = +2°C                                                      | Pdh         | 86,9      | kW         | Tj = +2°C                                                                      | COPd   | 3,42       | -        |
| Tj = +7°C                                                      | Pdh         | 87,3      | kW         | Tj = +7°C                                                                      | COPd   | 3,73       | -        |
| Tj = +12°C                                                     | Pdh         | 87,8      | kW         | Tj = +12°C                                                                     | COPd   | 4,10       | -        |
| Tj = bivalent temperature                                      | Pdh         | 85,9      | kW         | Tj = bivalent temperature                                                      | COPd   | 2,91       | -        |
| Tj = operation limit temperature                               | Pdh         | 85,9      | kW         | Tj = operation limit temperature                                               | COPd   | 2,91       | -        |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)    | Pdh         | 85,9      | kW         | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)                    | COPd   | 2,91       | -        |
| Bivalent temperature                                           | Tbiv        | -10       | °C         | For air-to-water heat pumps:<br>Operation limit temperature                    | TOL    | -10        | °C       |
| Cycling interval capacity for<br>heating                       | Pcych       |           | kW         | Cycling interval efficiency                                                    | COPcyc |            | -        |
| Degradation co-efficient (**)                                  | Cdh         | 1,0       | -          | Heating water operating limit temperature                                      | WTOL   | 65         | °C       |
| Power consumption in modes of                                  | other than  | active m  | ode        | Supplementary heater                                                           |        |            |          |
| Off mode                                                       | POFF        | 0,010     | kW         | Rated heat output                                                              | Psup   | 0,0        | kW       |
| Thermostat-off mode                                            | PTO         | 0,010     | kW         | Type of energy input                                                           | e      | electrical |          |
| Standby mode                                                   | PSB         | 0,010     | kW         |                                                                                |        |            |          |
| Crankcase heater mode                                          | PCK         | 0         | kW         |                                                                                |        |            |          |
| Capacity control                                               |             | fixed     |            | For air-to-water heat pumps:                                                   |        |            | m³/h     |
|                                                                |             |           |            | Rated air flow rate, outdoors                                                  | -      |            | ,        |
| sound power level,<br>indoors/outdoors                         | LWA         | 79/-      | dB         | For water-/brine-to-water heat                                                 |        | 14800      | m³/h     |
| Emissions of nitrogen oxides                                   | NOX         | 0         | mg/<br>kWh | pumps: Rated brine or water flow rate, outdoor heat exchanger                  | -      |            |          |
| For heat pump combination hea                                  | ater:       |           |            |                                                                                |        |            |          |
| Declared load profile                                          |             | -         |            | Water heating energy efficiency                                                | ηwh    | -          | %        |
| Daily electricity consumption                                  | Qelec       | -         | kWh        | Daily fuel consumption                                                         | Qfuel  | 0          | kWł      |
| Contact details                                                | ait deutscl | nland Gmb | H Industri | iestr. 3 95359 Kasendorf Germany <sup>®</sup>                                  |        |            | <u> </u> |
|                                                                |             |           |            | eaters, the rated heat output Prated<br>ntary heater Psup is equal to the supp |        |            |          |

| Model                                        | SWP 1000H |
|----------------------------------------------|-----------|
| Air-to-water heat pump: (yes/no)             | no        |
| Brine-to-water heat pump: (yes/no)           | yes       |
| Water-to-water heat pump: (yes/no)           | no        |
| Low-temperature heat pump: (yes/no)          | no        |
| Equipped with supplementary heater: (yes/no) | no        |
| combination heater with: (yes/no)            | no        |
| application: (low/medium)                    | low       |
| climate: (colder/average/warmer)             | average   |

| Item                                                                 | Symbol      | Value     | Unit       | Item                                                                 | Symbol | Value      | Unit |
|----------------------------------------------------------------------|-------------|-----------|------------|----------------------------------------------------------------------|--------|------------|------|
| Rated heat output                                                    | Prated      | 100       | kW         | Seasonal space heating energy efficiency                             | ηS     | 149,0      | %    |
| Declared coefficient of performation indoor temperature 20°C and out |             |           |            | Declared coefficient of performation indoor temperature 20°C and out |        |            |      |
| Tj = -7°C                                                            | Pdh         | 99,9      | kW         | Tj = -7°C                                                            | COPd   | 4,20       | -    |
| Tj = +2°C                                                            | Pdh         | 99,1      | kW         | Tj = +2°C                                                            | COPd   | 4,40       | -    |
| Tj = +7°C                                                            | Pdh         | 98,4      | kW         | Tj = +7°C                                                            | COPd   | 4,59       | -    |
| Tj = +12°C                                                           | Pdh         | 97,7      | kW         | Tj = +12°C                                                           | COPd   | 4,81       | -    |
| Tj = bivalent temperature                                            | Pdh         | 100,0     | kW         | Tj = bivalent temperature                                            | COPd   | 4,17       | -    |
| Tj = operation limit temperature                                     | Pdh         | 100,0     | kW         | Tj = operation limit temperature                                     | COPd   | 4,17       | -    |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)          | Pdh         | 100,0     | kW         | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)          | COPd   | 4,17       | -    |
|                                                                      | Tbiv        | -10       | °C         | For air-to-water heat pumps:<br>Operation limit temperature          | TOL    | -10        | °C   |
| Cycling interval capacity for<br>heating                             | Pcych       |           | kW         | Cycling interval efficiency                                          | COPcyc |            | -    |
| Degradation co-efficient (**)                                        | Cdh         | 1,0       | -          | Heating water operating limit temperature                            | WTOL   | 65         | °C   |
| Power consumption in modes of                                        | other than  | active m  | ode        | Supplementary heater                                                 |        |            |      |
| Off mode                                                             | POFF        | 0,010     | kW         | Rated heat output                                                    | Psup   | 0,0        | kW   |
| Thermostat-off mode                                                  | РТО         | 0,010     | kW         | Type of energy input                                                 | e      | electrical |      |
| Standby mode                                                         | PSB         | 0,010     | kW         |                                                                      |        |            |      |
| Crankcase heater mode                                                | PCK         | 0         | kW         |                                                                      |        |            |      |
| Other items                                                          |             |           |            |                                                                      |        |            |      |
| Capacity control                                                     |             | fixed     |            | For air-to-water heat pumps:<br>Rated air flow rate, outdoors        | -      | -          | m³/h |
| sound power level,<br>indoors/outdoors                               | LWA         | 83/-      | dB         | For water-/brine-to-water heat                                       |        | 18000      | m³/h |
| Emissions of nitrogen oxides                                         | NOX         | 0         | mg/<br>kWh | pumps: Rated brine or water flow rate, outdoor heat exchanger        | -      |            |      |
| For heat pump combination hea                                        | ater:       | 4         |            |                                                                      | 1      | L          |      |
| Declared load profile                                                |             | -         |            | Water heating energy efficiency                                      | ηwh    | -          | %    |
| Daily electricity consumption                                        | Qelec       | -         | kWh        | Daily fuel consumption                                               | Qfuel  | 0          | kWh  |
| Contact details                                                      | ait deutsch | nland Gmb | H Industri | estr. 3 95359 Kasendorf Germany                                      |        |            |      |

| Model                                        | SWP 1000H |
|----------------------------------------------|-----------|
| Air-to-water heat pump: (yes/no)             | no        |
| Brine-to-water heat pump: (yes/no)           | yes       |
| Water-to-water heat pump: (yes/no)           | no        |
| Low-temperature heat pump: (yes/no)          | no        |
| Equipped with supplementary heater: (yes/no) | no        |
| combination heater with: (yes/no)            | no        |
| application: (low/medium)                    | medium    |
| climate: (colder/average/warmer)             | average   |

| ltem                                                              | Symbol      | Value     | Unit       | Item                                                                         | Symbol     | Value      | Unit |
|-------------------------------------------------------------------|-------------|-----------|------------|------------------------------------------------------------------------------|------------|------------|------|
| Rated heat output                                                 | Prated      | 107       | kW         | Seasonal space heating energy efficiency                                     | ηS         | 118,0      | %    |
| Declared coefficient of perform<br>indoor temperature 20°C and or |             | perature  | Тј         | Declared coefficient of perform<br>indoor temperature 20°C and ou            | utdoor tem | perature   |      |
| Tj = -7°C                                                         | Pdh         | 106,0     | kW         | Tj = -7°C                                                                    | COPd       | 3,16       | -    |
| Tj = +2°C                                                         | Pdh         | 103,5     | kW         | Tj = +2°C                                                                    | COPd       | 3,50       | -    |
| Tj = +7°C                                                         | Pdh         | 102,0     | kW         | Tj = +7°C                                                                    | COPd       | 3,76       | -    |
| Tj = +12°C                                                        | Pdh         | 100,4     | kW         | Tj = +12°C                                                                   | COPd       | 4,07       | -    |
| Tj = bivalent temperature                                         | Pdh         | 106,7     | kW         | Tj = bivalent temperature                                                    | COPd       | 3,08       | -    |
| Tj = operation limit temperature                                  | Pdh         | 106,7     | kW         | Tj = operation limit temperature                                             | COPd       | 3,08       | -    |
| For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)       | Pdh         | 106,7     | kW         | For air-to-water heat pumps: Tj =<br>+15°C (if TOL < -20°C)                  | COPd       | 3,08       | -    |
| Bivalent temperature                                              | Tbiv        | -10       | °C         | For air-to-water heat pumps:<br>Operation limit temperature                  | TOL        | -10        | °C   |
| Cycling interval capacity for<br>heating                          | Pcych       |           | kW         | Cycling interval efficiency                                                  | COPcyc     |            | -    |
| Degradation co-efficient (**)                                     | Cdh         | 1,0       | -          | Heating water operating limit temperature                                    | WTOL       | 65         | °C   |
| Power consumption in modes of                                     | other than  | active m  | ode        | Supplementary heater                                                         |            | <u> </u>   |      |
| Off mode                                                          | POFF        | 0,010     | kW         | Rated heat output                                                            | Psup       | 0,0        | kW   |
| Thermostat-off mode                                               | PTO         | 0,010     | kW         | Type of energy input                                                         | e          | electrical |      |
| Standby mode                                                      | PSB         | 0,010     | kW         |                                                                              |            |            |      |
| Crankcase heater mode                                             | PCK         | 0         | kW         |                                                                              |            |            |      |
| Capacity control                                                  |             | fixed     |            | For air-to-water heat pumps:                                                 |            | -          | m³/h |
| sound power level,                                                | LWA         | 83/-      | dB         | Rated air flow rate, outdoors                                                | -          |            |      |
| indoors/outdoors                                                  |             | 007       |            | For water-/brine-to-water heat<br>pumps: Rated brine or water flow           | _          | 18000      | m³/h |
| Emissions of nitrogen oxides                                      | NOX         | 0         | mg/<br>kWh | rate, outdoor heat exchanger                                                 |            |            |      |
| For heat pump combination hea                                     | ater:       |           |            |                                                                              |            |            |      |
| Declared load profile                                             |             | -         |            | Water heating energy efficiency                                              | ηwh        | -          | %    |
| Daily electricity consumption                                     | Qelec       | -         | kWh        | Daily fuel consumption                                                       | Qfuel      | 0          | kWh  |
| Contact details                                                   | ait deutscl | nland Gmb | H Industri | iestr. 3 95359 Kasendorf Germany                                             |            | 1          |      |
|                                                                   |             |           |            | eaters, the rated heat output Prated<br>tary heater Psup is equal to the sup |            |            |      |

## ИΚ

ait-deutschland GmbH Industriestraße 3 D-95359 Kasendorf

E info@alpha-innotec.de W www.alpha-innotec.de



alpha innotec – an ait-deutschland GmbH brand